Research Artícle

World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org

SJIF Impact Factor: 6.129

CHECKLIST OF SUBAERIAL ALGAE FROM KARNATAK COLLEGE CAMPUS, DHARWAD

Doris M. Singh*, S. G. D. Rajan and Omkar A. Koshti

Department of Botany, Karnatak Science College, Dharwad-580001.

Corresponding Author: Doris M. Singh

Department of Botany, Karnatak Science College, Dharwad-580001.

Article Received on 21/07/2022

Article Revised on 11/08/2022

Article Accepted on 31/08/2022

ABSTRACT

In present study an attempt was made to document Subaerial Algae from Karnatak College Campus, Dharwad to fill a gap of valid document. In present study a total of 40 taxa belonging to 24 families from 16 different sites of natural and artificial substratum were surveyed. Members of Microcystaceae and Trentepohliaceae were highly distributed in the study area.

KEYWORDS: Subaerial Algae, KCD Campus, Checklist.

INTRODUCTION

Algae are simple photoautotrophic organisms which are mainly aquatic; some of them successfully colonized terrestrial environments, particularly the streptophytan lineage which gave rise to land plants. Among the subaerial forms, Cyanoprokaryotes have been most successful in colonizing terrestrial environments. Till early 19th century there was no specific term as "subaerial algae" which is now accepted after Fritsch (1907) described them as the algae which grow without aquatic environment but on other surfaces. Petersen (1915) for the first time used "aerial" which is equivalent to today's subaerial algae.

Subaerial algae are terrestrial algae that live on stable exposed surfaces above the soil, they are particularly abundant in areas with humid climates sometimes causes significant economic problems. Some members of Cyanoprokaryotes and Trentepohliales are well known agents of Biodeterioration of man-made constructions; they remain underexplored and relatively unknown.

Subaerial algae studies are available mostly from Europe with very limited research from other continents particularly Asia. The prokaryotic cyanobacteria and the eukaryotic Chlorophyta account for the largest numbers of species currently described. Chlorophyceae and Ulvophyceae, among the Chlorophyta, are monophyletic groups, which includes several widespread genera (*Chlorella, Stichococcus, Chlorococcum* and Trentepohliales respectively). Other forms include members of Bacillariophyceae, Desmidiaceae and Xanthophycea, their studies in India are highly limited and underexplored. India being a tropical country, promises rich diversity of subaerial forms which needs to be seriously considered for future studies.

In this paper, The authors chief aim remains to point out that even such a small area like KCD campus when explored could represent the richness of the Subaerial algal flora in this region. The paper suggests a further need for such work.

MATERIALS AND METHODS

Karnatak College Dharwad is the centenary college in Dharwad and recognised as a heritage value of Karnataka state. The college campus is spread over 55 acres with lush beautiful vegetation, promising noteworthy diversity of subaerial algal populations.

Monsoon surveys were conducted in sixteen areas (Table 1) of KCD campus for the period 2019-22. During the sampling period the relative humidity was found to be in the range of 80-100.

Sample code	Name of the Location sampled	Substratum details	Location
а	Botany Dept	Walls, Ceilings and Wet Bricks	15.451911, 74.996376
b	Thuja tree near Botany Dept	Corticolous	15.451942, 74.997090
с	False Ashoka tree near Botany Dept	Corticolous	15.451298, 74.996606
d	Mahogani tree near Botany Dept	Leaf surface	15.451794, 74.995941
e	Araucaria tree near Botany Dept	Corticolous	15.451794, 74.995941
f	Cycas tree near Botany Dept	Corticolous	15.449353, 74.991559
g	Microbiology Dept	Wet Walls	15.452625, 74.997479
h	Termite mound near Microbiology Dept	Vertical mound surface	15.452740, 74.997283
i	Yoga Dept	Wet walls	15.453620, 74.996725
j	Leaking Concrete Tank near Canteen	Dripping concrete wall	15.452592, 74.997501
k	Abandoned house near Canteen	Wet wall	15.452074, 74.998032
1	Eucalyptus tree near Health centre	Corticolous	15.455178, 74.998498
m	Leaking Concrete Tank near Geography Dept	Dripping concrete wall	15.451766, 74.997842
n	Rain tree near Commerce building	Dripping concrete wall	15.453292, 74.998855
0	College Principal Bungalow	Wet walls	15.453421, 74.998974
р	Corresponding Author's residence	Wet wall	15.453417, 74.996609

Table 1: Sample Details.

Dept: Department

Samples were collected in labelled zipped 6 X 7cm polythene bags. They were immediately transferred to the laboratory and were observed for diacritical morphological characters under Light Microscope. The observed specimens were documented through Zeiss Microscope camera. For future needs some part of the collected specimen were subjected to preservatives and stored in 5ml microtubes. Cyanoprokaryotes and Green Algae samples were preserved in 2% formalin and 2% M3 fixative respectively.

For Morpho-taxonomic enumeration of Cyanoprokaryotes, standard monographs of Desikacharya (1959), Komarek (2013), Komarek *et al.* (2014), Hauer (2022). For Green algae, synopsis of Ettl and Gärtner (1995) were mainly referred.

RESULTS AND DISCUSSION

The patches or biofilms that colours the walls in different shades of green, reddish-orange or purple-black are

usually caused by green algae and cyanoprokaryotes. A total of 40 taxa of subaerial algae on the natural and artificial substratum surveyed (Table 2) belonging to the families Synecoccaceae (2); Merismopediaceae (1); Chroococcaceae Microcystaceae (5); (1): Chamaesiphonaceae Xenococcaceae (1);(1);Pseudanabenaceae (2);Schizothricaceae (2);Phormidiaceae (2);Oscillatoriaceae (1);Syctonemataceae (3); Rivulariaceae (1);Microchaetaceae (1); Tolypothrichaceae (1); Nostaceae (2);Chlorococcaceae (2);Chlorellaceae (1);Ulothrichaceae (1);Chaetophoraceae (1);Chaetophoraceae (1); Desmidiaceae (1); Mesotaeniaceae (1); Naviculaceae (1) and Trentepohliaceae (5). Members of Microcystaceae and Trentepohliaceae were highly distributed in the study area.

Table 2: Survey Data.

Sr. No.	Таха	Family	Sample Code
1	Aphanothece castagnei	Synecoccaceae	а
2	Gloeothece rupestris	Synecoccaceae	a
3	Aphanocapsa muscicola	Merismopediaceae	a
4	Gloeocapsa atrata	Microcystaceae	а
5	Gloeocapsa punctate	Microcystaceae	а
6	Gloeocapsa rupestris	Microcystaceae	а
7	Gloeocapsa kuetzingiana	Microcystaceae	а
8	Gloeocapsa alpina	Microcystaceae	i
9	Chroococcus cohaerens	Chroococcaceae	а
10	Chamaesiphon sp. cf.	Chamaesiphonaceae	а
11	Chroococcidiopsis kashayi	Xenococcaceae	g
12	Pseudanabaena amphigranulata	Pseudanabenaceae	i
13	Leptolyngbya valderiana	Pseudanabenaceae	i
14	Schizothrix fragilis	Schizothrixaceae	a

www.wjpls.org

Vol 8, Issue 9, 2022.

15	Microcoleus vaginatus	Schizothrixaceae	р
16	Phormidium autumnale	Phormidiaceae	р
17	Phormidium hansgirgii	Phormidiaceae	j
18	Blennothrix sp. cf.	Oscillatoriaceae	n
19	Scytonema drilosiphon	Syctonemataceae	a, j, n
20	Scytonema hoffmanni	Syctonemataceae	a, o
21	Brasilonema sp. cf.	Syctonemataceae	a
22	Calothrix bharadwajae	Rivulariaceae	р
23	Microchaete sp. cf.	Microchaetaceae	f
24	Tolypothrix distorta	Tolypothrichaceae	e
25	Cylindrospermum bengalense	Nostaceae	a
26	Nostoc commune	Nostaceae	a
27	Chlorococcum humicola	Chlorococcaceae	k
28	Macrochloris sp.	Chlorococcaceae	h
29	Chlorella minutissima	Chlorellaceae	k
30	Stichococcus minutus	Ulothrichaceae	h
31	Desmococcus olivaceus	Chaetophoraceae	a
32	Cosmarium sp.	Desmidiaceae	a
33	Cylindrocystis sp.	Mesotaeniaceae	a
34	<i>Gyrosigma</i> sp.	Naviculaceae	j
35	Trentepohlia minima	Trentepohliaceae	1
36	Trentepohlia abietina	Trentepohliaceae	1
37	Trentepohlia monilia	Trentepohliaceae	c, a
38	Trentepohlia umbrina	Trentepohliaceae	a
39	Printzina sp.	Trentepohliaceae	i
40	Cephaleuros parasiticus	Trentepohliaceae	d

1. Scytonema drilosiphon _2. Trentepohlia umbrina _3. Gloeocapsa punctuate _4. Tolypothrix distorta

Species visible on Natural and Artificial substratum

Wall

REFERENCE

- 1. Desikachary, TV. Cyanophyta. ICAR monographs on algae. Indian Council of Agricultural Research, New Delhi: 1959; 1-686.
- Ettl H, Gärtner G. Syllabus der Boden-, Luft- und Flechtenalgen. Stuttgart: Gustav Fischer Verlag, Stuttgart, Jena, New York: 1995; 1-722.
- 3. Fritsch FE. Ann. Bot., 1907; 30: 235-275.
- Fritsch FE.A general consideration of aerial and fresh water algal flora of Ceylon. Proceedings of the Royal Society of London, Series B: 1907; 11: 79-197.
- 5. Hauer T, Komárek J. CyanoDB 2.0 On-line database of cyanobacterial genera.-World-wide electronic publication, Univ. of South Bohemia & Inst. of Botany AS CR: 2022. http://www.cyanodb.cz.
- Komárek J. Cyanoprokaryota. 3. Heterocytous genera. – In: Büdel B., Gärtner G., Krienitz L. & Schagerl M. (eds), Süswasserflora von Mitteleuropa/Freshwater flora of Central Europe, Springer Spektrum Berlin, Heidelberg: 2013; 1130.
- 7. Komárek J, Kaštovský J, Mareš J, Johansen JR. Preslia, 2014; 86: 295–335.
- 8. Petersen JB. Nature, 1915; 7(12): 272-379.