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ABSTRACT 

Metabolic disorders, such as obesity and type 2 diabetes, have assumed 

epidemic proportions and present major challenges for healthcare 

systems. We have tried to explore the series of 2-phenyl-ethenesulfonic 

acid phenyl esters to develop best QSAR equations by which we can 

design novel and potent compounds. The QSAR study carried out on 

thirteen 2-phenyl-ethenesulfonic acid phenyl esters as PPAR agonist. 

 Molecular modeling studies were performed using chemoffice 6.0 supplied by Cambridge 

soft. The sketched structures were subjected to energy minimization & the lowest energy 

structure was used to calculate the physiochemical properties. The regression analysis was 

carried out using a computer program called VALSTAT. The best models were selected from 

the various statistically significant equations. The study revealed that the Model-3 explains 

83.1% variance in the PPAR binding activity. Model-3 having low standard error (0.0901) 

shows the relative good fitness of the model. It has the characters of large F value (37.6459), 

low P- value (0.00217), r
2
 and q

2
 values close to 1, as well as p<0.001. It means model-3 is a 

best model among all developed model. It shows that descriptor molecular weight (MW) and 

connolly solvent-excluded volume (Angstroms3) (SEV) contribute negatively; whereas molar 

refractivity (MR) contribute positively towards PPAR binding activity. Molar refractivity 

(MR), a steric parameter, which is positively correlated, indicates that sterically bulky 

substituent would increases the binding affinity. 

 

KEYWORDS: PPAR; Diabetes; ethenesulfonic acid phenyl esters; QSAR. 

wjpls, 2016, Vol. 3, Issue 1, 327-337 Research Article ISSN 2454-2229 

World Journal of Pharmaceutical and Life Sciences 
WJPLS 

 

www.wjpls.org SJIF Impact Factor: 4.223 

*Corresponding Author 

Gaurav Bajpai 

Department of Chemistry, 

Sadhu Vaswani College, 

Sant Hiradaram Nagar, 

Bairagarh, Bhopal-462030 

(M.P.) India. 

 

 

 



www.wjpls.org 328 

Bajpai et al.                                             World Journal of Pharmaceutical and Life Sciences 

1. INTRODUCTION 

Diabetes mellitus is a chronic metabolic disorder characterized by persistent hyperglycemia, 

altered metabolism of lipids, carbohydrates, proteins and an increased risk of complications 

from vascular diseases.
[1,2]

 Diabetes is a major degenerative disease in the world today.[3] 

Several epidemiological and clinical studies indicate a direct relationship between 

hyperglycemia and long-term complications such as retinopathy, nephropathy, neuropathy 

and angiopathy, etc.
[4,5]

 The disease which is characterized by hyperglycemia
[6]

, lipoprotein 

abnormalities,
[7] 

raised basal metabolic rate,
[8]

 defect in reactive oxygen species scavenging 

enzymes
[9]

 and high oxidative stress-induced damage to pancreatic beta cells.
[10,11]

 Insulin 

resistance in the liver and peripheral tissues together with a pancreatic cell defect are the 

common causes of type 2 diabetes. It is now appreciated that insulin resistance can result 

from a defect in the insulin receptor signaling system, at a site post binding of insulin to its 

receptor.
[12]

 

 

Diabetic patients (>90) suffer from type 2 diabeties, that is non insulin diabetic mellitus, 

which is characterized by insulin resistance and hyperglycemia.
[13]

 Diabetic is a major and 

growing public health problem throughout the world, with an estimated worldwide 

prevalence in 2000 of 150 million people, excepted to rice to 220 million people by 2010.
[14]

 

The various pharmacological active compounds such as sulfonylureas, the first generation of 

antidiabetic agents such as chlorpropamide, tolbutamide and tolazamide are still in use but 

are less potent than the second generation drugs like glibenclamide, glipizide and glimepiride. 

Sulfonylureas are mostly subjected to hepatic metabolism, yielding less active or inactive 

metabolites that are then eliminated through the kidneys. Patients with impaired hepatic or 

renal function risk severe hypoglycemia because of accumulation of active drug in 

circulation.
[15,16]

 

 

Intensive effort has been invested in the development of drugs involving PPAR agonists as 

therapeutic agents.
[17] 

Over the past several years, PPAR- modulators have attracted 

increasing attention as potential treatments of diabetes. In fact, using various animal models, 

the thiazolidinedione, rosiglitazone (a full PPAR agonist), was shown to reduce bone 

mineral density and increase bone marrow adipocytes.
[18]

 Thus, we have tried to explore the 

series of 2-phenyl-ethenesulfonic acid phenyl esters as PPAR agonist to develop best QSAR 

equations by which we can design novel and potent compounds. 
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2. MATERIALS AND METHOD 

2.1 Data Set for Analysis 

The in-vitro biological activity data reported as IC50 for PPAR binding of 2-phenyl-

ethenesulfonic acid phenyl ester compounds was used for the current study.
[19]

 A total of 13 

compounds were selected for the study. The structures and binding data of 2-phenyl-

ethenesulfonic acid phenyl esters are shown in Table 1. As biological activities are generally 

skewed, the reported IC50 (in mole) values were converted into the corresponding pIC50 using 

the following formula. 

pIC50 = -log IC50 

 

Table 1: Structures and biological activity values for PPAR binding for 2-phenyl-

ethenesulfonic acid phenyl esters. 

S

O

O

O R

 

Compound R1 
PPAR 

(IC50 nM) 

Observed BA 

(pIC50) 

1a 

 

1326 5.877456 

1b 

 

1088 5.963371 

1c 

 

407 6.390406 

1d* 

 

1187 5.925549 

1e Cl

 

302 6.519993 

1f 

Cl

Cl

Cl

 

1439 5.841939 
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1g 
O

 

1294 5.888066 

1h* O

 

703 6.153045 

1i 

O

O

 

747 6.126679 

1j 

H

O

 

2098 5.678195 

1k* NH O

 

10712 4.970129 

1l 

O

 

382 6.417937 

1m O

HO  

13521 4.868991 

IC50 = Dose in nM required to produce 50% binding 

*Molecules in test set (03 compounds), remaining in training set (10 compounds) 

 

2.2 Software 

An Intel Pentium dual personal computer (CPU at 2.22 GHz) with the Windows XP 

operating system was used. QSAR study was performed in software ChemOffice 6.0, 

Cambridgesoft, USA).
[20]

 Sketching of structures was performed with ChemDraw ultra 6.0 
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and geometry optimisation was performed with Chem3D Ultra and was utilized to calculate 

the molecular descriptors. The VALSTAT software was employed for the Pearson 

Correlation Matrix and simple multiple linear regression model (MLR) analysis.
[21] 

 

2.3 Molecular Modelling 

The structures were sketched using ChemDraw Ultra 6.0 and were exported to Chem3D 

software. The molecular mechanics (MM2) method was applied to search for lower energy 

conformation for each molecule. The energy minimised molecules were subjected to re-

optimization via the Austin model -1 method until the root mean square gradient attained a 

value smaller than 0.001 kcal/mol using Molecular Orbital Property Accompany Name 

(MOPAC). 

 

2.4 Descriptors Generation 

The thermodynamic, steric and electronic parameters are shown in table 2 were calculated for 

QSAR analysis. Thermodynamics parameters describe free energy change during drug 

receptor complex formation. Spatial parameters were quantified for steric features of drug 

molecules required for its complimentary fit with the receptor. Electronic parameters describe 

weak non-covalent bonding between drug molecules and the receptor.
[22] 

 

Table 2: List of descriptors used in QSAR analysis. 

S.No. Descriptors Abbr. Type Description 

1 Bend Energy (kcal/mol) Eb T* 
The sum of the angle-bending terms of the 

force-field equation. 

2 
Dipole-Dipole Energy 

(kcal/mol) 
Ed T* 

The sum of the electrostatic energy terms 

resulting from interaction of two dipoles. 

3 Partition Coefficient CLogP T* Partition Coefficient (Octanol/water) 

4 Stretch Energy Es T 
Represents the energy associated with distorting 

bonds from their optimal length. 

5 
Stretch-Bend 
Energy(kcal/mol) 

Esb T* 
The sum of the stretchbend coupling terms of 
the force-field equation. 

6 
Torsion 

Energy(kcal/mol) 
Et T* 

The sum of the dihedral bond rotational energy 

term of the force-field equation. 

7 Total Energy (kcal/mol) E T* The sum of all terms the the force-field equation. 

8 
van der Waals 1.4 

Energy (kcal/mol) 
E14 T* 

The sum of pairwise van der Waals interaction 
energy terms for atoms separated by exactly 3 

chemical bonds. 

9 Boiling Point (Kelvin) Bp T* The boiling point for the structure at 1 atm. 

10 
Heat of Formation 

(kcals/mole) 
HF T* 

The heat of formation (ΔHf) for the structure at 

298.15 K and 1 atm. 

11 LogP LogP T* 
The logarithm of the partition coefficient for n-

octanol/water. 

12 
Molar Refractivity 

(cm3/mole) 
MR T* The molar refraction index. 



www.wjpls.org 332 

Bajpai et al.                                             World Journal of Pharmaceutical and Life Sciences 

13 

Connolly Solvent 

Accessible Surface Area 
(Angstroms2) 

SAS Steric 

The locus of the center of a spherical probe 

(representing the solvent) as it is rolled over the 
molecular model. 

14 

Connolly Molecular 

Surface Area 

(Angstroms2) 

MSS Steric 

The contact surface created when a  spherical 

probe sphere (representing the solvent) is rolled 

over the molecular model. 

15 

Connolly Solvent- 

Excluded Volume 

(Angstroms3) 

SEV Steric 
The volume contained within the contact 

molecular surface. 

16 Ovality Ovality Steric 

The ratio of the CMA to the Minimum Surface 
Area. The Minimum Surface Area is the surface 

area of a sphere having a volume equal to the 

CSE of the molecule. Computed from the CMA 
and CSE properties. 

17 
Principal Moments of 
Inertia-X 

PMIX Steric 

The Moments of Inertia when the Cartesian 

coordinate axes are the principal axes of the 

molecule. 

18 
Principal Moments of 

Inertia-Y 
PMIY Steric 

The Moments of Inertia when the Cartesian 

coordinate axes are the principal axes of the 

molecule. 

19 
Principal Moments of 

Inertia-Z 
PMIZ Steric 

The Moments of Inertia when the Cartesian 
coordinate axes are the principal axes of the 

molecule. 

20 Electronic Energy EE E* The total electronic energy. 

21 Gamma polarizability Gpol E* Third order polarizability coefficients. 

22 HOMO Energy(eV) HOMO E* 
Energy of the highest occupied molecular 

orbital. 

23 LUMO Energy (eV) LUMO E* 
Energy in of the lowest unoccupied molecular 

orbital. 

24 Repulsion Energy (eV) RE E* 
Total core-core internuclear repulsion between 

atoms. 

25 Dipole Moment Dipole E* Molecular dipole moment. 

T*= Thermodynamic property, E*= Electronic property 

 

2.5 Division of Test and Training Set 

It is proven that the only way to estimate the true predictive power of a model is to test it on a 

sufficiently large collection of compounds from an external test set. The test set must include 

not less than five compounds, whose activities and structure must cover the range of activities 

and structures of compounds from the training set. This application is necessary for obtaining 

trustful statistics for comparison between the observed and predictive activities for these 

compounds. In this series 3 compounds were selected as a test set and remaining 10 

compounds were used as training set. The test set used for the validation of model. 

 

2.6 Statistical Analysis 

First, the descriptors were checked for constant or near constant values and those detected 

were discarded from the original data matrix. Then, the descriptors were correlated with each 
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other and with the activity data. Among the collinear descriptors detected, the one most 

highly correlated with activity was retained and the rest were omitted. The contribution of 

descriptors to biological activity was studied using simple linear regression analysis by 

VALSTAT Software and, due to the problem of collinearity among descriptors, different 

combinations of descriptors were subjected to sequential and stepwise multiple regression 

analysis. The intercorrelation matrix of the descriptors of QSAR equations is given in table 3. 

Descriptors having intercorrelation above |r|>0.5 were not considered while deriving the 

QSAR model. The predictor variables with p value >0.05 were eliminated whilst deriving the 

QSAR models in order to assure their statistical reliability. Statistical quality of the models 

was evaluated by using the parameters; number of compounds (n), correlation coefficient (r), 

coefficient of determination (r
2
), standard error of estimate (s), variance, Fischer F-test for 

quality of fit, and Student’s t-test for test of significance . Figures within parentheses indicate 

the confidence interval (95% significant) of the regression coefficient and the intercept. The 

level of significance of each regression term was assessed using t-test and is reflected through 

the minimum value of the standard error term. Residual plots derived by plotting residuals, 

i.e., the difference between the predicted and the observed response as a function of the 

dependent variable, are used to identify outliers from the QSAR models. A compound is 

considered as an outlier when the residual value exceeds twice the standard error of the 

estimate of the model. 

 

Table 3: Pearson Correlation Matrix of the descriptors used in all models. 

 

In order to validate the derived QSAR models, the leave-one-out (LOO) method, also known 

as the jack-knife validation test, was used. Once a model was derived, each compound was 

eliminated from the remaining compounds and the eliminated compound was predicted from 

this model. The same procedure was repeated after elimination of another compound, until all 

the compounds had been eliminated once. The predictability of each model was evaluated by 

using cross validated correlation coefficient (q
2
).

[23] 

 

Parameters BA E14 MR SEV PMIX HOMO LUMO 

BA 1.000       

E14 -0.174 1.000      

MR 0.159 -0.284 1.000     

SEV -0.225 -0.080 -0.060 1.000    

PMIX 0.229 -0.252 0.456 0.084 1.000   

HOMO 0.328 -0.182 0.300 0.776 0.094 1.000  

LUMO 0.342 -0.050 -0.159 0.388 -0.277 0.439 1.000 
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3. RESULT AND DISCUSSION 

The correlation between the different physicochemical descriptors as independent variable 

and the negative log of the observed activity as dependent variable was determined using 

VALSTAT while exploring the statistically significant relationships to study the selectivity 

requisites among these compounds. The intercorrelation between all the descriptors was also 

checked and good orthogonality was ensured during quantitative model building. Some of the 

statistically significant models are discussed below. 

 

Model 1: BA = [29.8216 (± 3.81837)] +HOMO [2.76231 (± 0.431208)] +E14 [3.69903 (± 

1.42212)] +PMIX [-8.30969 (± 3.39441)] 

N = 10, r = 0.7815, r2 = 0.6107, r2adj = 0.5690, std = 0.3911, F = 14.6409 

Model 1 explains only 61.2% variance in the PPAR binding activity. It shows that descriptor 

highest occupied molecular orbital (HOMO) and van der Waals 1.4 Energy (kcal/mol) (E14) 

contribute positively, where as principal moment of inertia X (PMIX) contribute negatively 

towards PPAR binding activity. It is not a very good significant equation therefore new 

model required having good explained variance. 

 

Model 2:   BA = [3.21588 (± 1.27474)] +LUMO [0.010452 (± 0.00158041)] +SEV [-

0.0442412 (± 0.00871579)] +MR [0.18273 (± 0.0241215)] 

N = 10, r = 0.830432, r2 = 0.6896, r2adj = 0.65513, std = 0.281289, F = 19.9964 

Model 2 explains only 68.9% variance in the PPAR binding activity. It shows that descriptor 

connolly solvent-excluded volume (Angstroms3) (SEV) contribute negatively; whereas low 

unoccupied molecular orbital (LUMO) and Molar refractivity (MR) contributes positively 

towards PPAR binding activity. In this model one compound (1e) was outlier. It is not a 

very good significant equation therefore new model required having good explained variance. 

So we tried to develop the new model by removing the outlier. 

 

Model 3: BA = [3.87157(± 0.429843)] +LUMO[0.0040636(± 0.000697125)] +SEV [-

0.0243882 (± 0.00313334)] +MR [0.0947197 (± 0.010074)] 

N = 09, r = 0.9115, r2 = 0.8309, r2adj = 0.8087, std = 0.0901, F = 37.6459, q2 = 0.7641 

Model 3 explains 83.1% variance in the PPAR binding activity. Model 3 having low 

standard error (0.0901) shows the relative good fitness of the model. It has the characters of 

large F value (37.6459), low P- value (0.00217), r
2
 and q

2
 values close to 1, as well as 

p<0.001. It means model-4 is a best model among all developed model. It shows that 
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descriptor connolly solvent-excluded volume (Angstroms3) (SEV) contribute negatively; 

whereas low unoccupied molecular orbital (LUMO) and Molar refractivity (MR) contributes 

positively towards PPAR binding activity. The LUMO energy is the crucial indicator of 

molecular reactivity and properties. The positive contribution of LUMO indicates its high 

value will favor the activity. The significance of LUMO indicates, high electrophilicity of the 

compounds, and there by accepting electrons to its lowest unoccupied molecular orbital, 

would help them to improve the biological activity. Molar refractivity (MR), a steric 

parameter, which is positively correlated, indicates that sterically bulky substituent would 

increases the binding affinity. The graph plotted between observed and predicted biological 

activity (BA) of training set of model-3 is shown in figure 1. 

 

 

Figure 1: The graph plotted between observed and predicted biological activity (BA) of 

training set of model-3. 

 

To conclude, all types of descriptors like electronic, thermodynamic, and steric must be fully 

optimized for better PPAR binding activity. The findings suggests that the presence of bulky 

group increases the PPAR binding activity, and the presence of high electrophilicity groups 

such as methoxy group increases the activity of the compound. The moiety which increases 

the charge distribution over the molecule is favourable for the activity. The present study 

provides better insight into designing more potent PPAR agonists in future prior to their 

synthesis. 

 

 



www.wjpls.org 336 

Bajpai et al.                                             World Journal of Pharmaceutical and Life Sciences 

ACKNOWLEDGEMENTS 

The authors wish to thank the Principal, Sadhu Vaswani College, Bhopal for providing the 

necessary facilities for undergoing this research work. 

 

REFERENCES 

1. T.E.G.K. Murthy, C. Mayuren, M.S.R. Krishna, T.P.K. Reddy, Int. J. Pharmacol. Biolog. 

Sci, 2008; 2(1): 139. 

2. S. Bastaki, Int. J. Diabetes Metab, 2005; 13: 111. 

3. S.O. Ogbonnia, J.I. Odimegwu, V.N. Enwuru, African J. Biotech, 2008; 7(15): 2535. 

4. D. Porte, M.W. Schwart, Science, 1996; 27: 699. 

5. V. Kristova, S. Liskoya, S. Sotnikova, R. Vojtko, A. Kurtansky, Physiol. Res, 2008; 5: 

491. 

6. N.H. Ugochukwu, N. E. Babady, M. Cobourne, S.R. Gasset, J. Biosci, 2003; 28(1): 1. 

7. A. Scoppola, F.R. Montecchi, G. Mezinger, A. Lala, Atherosclerosis, 2001; 156: 357. 

8. D.U. Owu, A.B. Antai, K.H. Udofia, A.O. Obembe, K.O. Obasi, M.U. Eteng, J. Biosci, 

2006; 31(5): 575. 

9. M.M. Kesavulu, R. Giri, R.B. Kameswara, C. Apparao, Diabetic Metabol. 2000, 26, 387. 

10. N. Ahmed, Int. J. Diabetes Metab, 2009; 17: 105. 

11. S. Satyanarayana, Y.S.R. Krishnaiah, K.K. Eswar, I.R. Elisha, V.V.S.K. Kiran, Indian 

Drugs, 1998; 35(10): 640. 

12. M.S. Malamas, J. Sredy, I. Gunawan, B. Mihan, D.R. Sawicki, L. Seestaller, D. Sullivan, 

B.R. Flam, J. Med Chem, 2000; 43(5): 995. 

13. J.F. Tobin, S. Tam, Curr. Opin. Drug Discov. Devel, 2002; 5: 500. 

14. P. Zimmet, K.G. Alberti, J. Shaw, Nature, 2001; 414(6865): 782. 

15. R.A. Defronzo, Ann. Intern. Med, 2000; 133(1): 73. 

16. S.D. Taylor, B. Hill, Expert Opin. Investig. Drugs, 2004; 13(3): 199. 

17. A. C. Li, W. Palinski, Annu. Rev. Pharmacol. Toxicol, 2006; 46: 1. 

18. S. O. Rzonca, L. J. Suva, D. Gaddy, D. C. Montague, B. Lecka-Czernik, Endocrinology, 

2004; 145: 401. 

19. Y. Lee, C. Yang, I. Kang, S. Wu, Y. Chao, J. Chern, S. Lee, Bioorg. Med. Chem. Letters, 

2008; 18: 5676–5679. 

20. CS Chem Office, version 6.0, Cambridge Soft Corporation, software publisher 

Association, 1730 M Street, NW, Suite 700, Washington DC, 2003; 6(202): 452-1600, 

USA. 

http://www.ncbi.nlm.nih.gov/pubmed?term=Malamas%20MS%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Sredy%20J%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Gunawan%20I%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Mihan%20B%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Sawicki%20DR%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Seestaller%20L%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Sullivan%20D%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Flam%20BR%5BAuthor%5D&cauthor=true&cauthor_uid=10715163
http://www.ncbi.nlm.nih.gov/pubmed/10715163
http://www.ncbi.nlm.nih.gov/pubmed?term=Taylor%20SD%5BAuthor%5D&cauthor=true&cauthor_uid=15013940
http://www.ncbi.nlm.nih.gov/pubmed?term=Hill%20B%5BAuthor%5D&cauthor=true&cauthor_uid=15013940


www.wjpls.org 337 

Bajpai et al.                                             World Journal of Pharmaceutical and Life Sciences 

21. S. Riahi, E. Pourbasheer, R. Dinarvand, M. R. Ganjali, P. Norouzi, Chem. Biol. Drug 

Des., 2008; 72: 575-584. 

22. P. Valetina, K. Ilango, K. Yamuna, D. Purushothaman, A.R. Samyuktha, J. Young 

Pharm., 2009; 1: 77. 

23. R. Dhondge, S. C. Chaturvedi, Med. Chem. Res., 2009; 18: 167–178. 

 


