Research Artícle

World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org

SJIF Impact Factor: 6.129

CONSTITUENTS AND ANTIMICROBIAL ACTIVITY OF SUDANESE ARISTOLOCHIA BRACTEOLATE LAM. (ARISTOLOCIACEAE) OIL

Abdel Karim M.^{1*}, Elham A.¹, Alla M.² and Mai Mekki¹

¹Sudan University of Science and Technology, Faculty of Science. ²Karar University, General Science Dept.

Corresponding Author: Abdel Karim M. Sudan University of Science and Technology, Faculty of Science.

Article Received on 15/01/2022

Article Revised on 05/02/2022

Article Accepted on 25/02/2022

ABSTRACT

The objective of the present study is to investigate the constituents and antimicrobial activity of Aristolochia bracteolata oil. Twelve components were detected by GC-MS analysis. Major constituents are 9-octadecenoic acid methyl ester (52.96%), hexadecanoic acid methyl ester(28.36%) and methyl stearate(6.68%). The antimicrobial activity of the oil was evaluated by using disc diffusion bioassay against five standard human pathogens (Gram positive: *Staphylococcus aureus* and *Bacillus subtitis*; Gram negative: *Escherichs coli* and *Pseudomonas aeruginosa* and the fungal species *Candida albicans*). Aristolochia bracteolata oil showed moderate activity against *Escherichs coli*, *Staphylococcus aureus* and *Candida albicans*. However, the oil was inactive *Pseudomonas aeruginosa* and *Bacillus subtilis*.

KEYWORDS: Aristolochia bracteolate, Oil, GC-MS Analysis, Antimicrobial activity.

INTRODUCTION

Medicinal plants for thousands of years, played a vital role in human life. These plants comprise many bioactive molecules with diverse pharmacological effects. Hence they may treat a wide array of human disorders and serve as a renewed and tremendous source of new drug leads.^[1]

Aristolochia bracteolate Lam. is a perennial climber in the family Aristolociaceae which comprise more than 500 species.^[2] This plant which is distributed in Africa, Asia and south America, is a potential medicinal plant which is widely used in traditional system of medicine.^[3] Preliminary phytochemical screening revealed the presence of tannins, saponins, flavonoids, alkaloids and terpenoids.^[4]

Aristolochia bracteolate is a leading antimalarial plant.^[5] It is also used traditionally against dysentery,

hypertension, diabetes, fever and scorpion bite.^[3] *Aristolochia bracteolate* reportedly possesses antimicrobial.^[5-10] antiarthritis,^[11,12] antioxidant,^[13] antiinflammatory, antihyperglycaemic and antihyperlipidemic properties.^[14]

MATERIAL AND METHODS

Plant material

The seeds of *Aristolochia bracteolate* were collected from Kordofan-Sudan. The plant was authenticated by The Medicinal and Aromatic Plants Research Institute-Sudan.

Test organisms

Aristolochia bracteolate oil was investigated for antimicrobial activity using the standard microorganisms shown in Table 1.

Table 1: Test organisms.

No.	Microorganism	Туре
1	Bacillus subtilis	G+ve
2	Staphylococcus aureus	G+ve
3	Pseudomonas aeroginesa	G-ve
4	Escherichia coli	G-ve
5	Candida albicans	Fungi

Equipments

GC-MS analysis was conducted on a Shimadzo GC-MS-QP2010 Ultra instrument with RTX-5MS column (30m,length; 0.25mm diameter ; 0.25 µm, thickness).

Methods

Extraction of oil

Aristolochia bracteolate seeds (250g) were macerated with hexane at room temperature. Removal of the solvent under reduced pressure gave the oil.

 Table 2: Oven temperature program.

GC-MS analysis

Aristolochia bracteolate oil was analyzed by gas chromatography- mass spectrometry. A Shimadzo GC-MS-QP2010 ultra instrument was used. Helium was used as carrier gas. Oven temperature program is given in Table 2, while other chromatography conditions are displayed in Table 3.

Rate	Temperature	Hold time (min ⁻¹)
-	60	0.00
10	300	3.00

Table 3: Chromatography conditions.

Column oven temperature	50.0c°
Injection temperature	300.00
Injection mode	Split
Flow control mode	Pressure
Pressure	100.00KPa
Total flow	50.0 ml/min
Column flow	1.61 ml/min
Linear velocity	46.3cm/sec
Purge flow	3.0 ml/min
Split ratio	-1.0

Testing of antimicrobial susceptibility

The paper disc diffusion method was used to screen the antibacterial activity of the studied oil and performed by using Mueller Hinton Agar (MHA). The experiment was carried out according to the National Committee for Clinical Laboratory Standards Guidelines.^[15] Bacterial suspension was diluted with sterile physiological solution to 10⁸ cfu/ml (Turbidity= McFarland standard 0.5). One hundred microliters of bacterial suspension were swabbed uniformly on surface of MHA and the inoculum was allowed to dry for 5 minutes. Sterilized filter paper discs (Whatman No.1, 6mm in diameter)

were placed on the surface of the MHA and soaked with $20\mu l$ of a solution of test sample. The inoculated plates were incubated at $37^{\circ}C$ for 24 hours in the inverted position. The diameters (mm) of the inhibition zones were measured as average of two replicates.

RESULT AND DISCUSSION

GC-MS analysis of *Aristolochia bracteolate* oil showed the presence of 12 components (Table 4). The typical total chromatogram (TIC) is shown in Fig. 1.

Table 4: Chemical constituents of Aristolochia bracteolate oil.

No.	Name	Ret.Time	Area%
1.	Methyl tetradecanoate	14.202	0.67
2.	9-Hexadecenoic acid, methyl ester, (Z)-	16.211	0.24
3.	Hexadecanoic acid, methyl ester	16.412	28.36
4.	cis-10-Heptadecenoic acid, methyl ester	17.231	0.10
5.	Heptadecanoic acid, methyl ester	17.442	0.15
6.	9,12-Octadecadienoic acid (Z,Z)-, methyl ester	18.160	3.86
7.	9-Octadecenoic acid (Z)-, methyl ester	18.222	52.96
8.	9-Octadecenoic acid, methyl ester, (E)-	18.255	2.66
9.	Methyl stearate	18.426	6.68
10.	cis-11-Eicosenoic acid, methyl ester	20.075	0.82
11.	Eicosanoic acid, methyl ester	20.278	2.16
12.	Docosanoic acid, methyl ester	21.984	1.34

Major components of the oil are

- i) 9-Octadecenoic acid (Z)-, methyl ester (52.96%).
- ii) Hexadecanoic acid, methyl ester (28.36%).
- iii) Methyl stearate (6.68%)

20

27

20

40

The mass spectrum of 9-octadecenoic acid methyl ester is presented in Fig. 2. The signal at m/z296 (RT.18.222) corresponds M^+ [$C_{19}H_{36}O_2$]⁺.The mass spectrum of

hexadecanoic acid methyl ester is presented in Fig. 3. The peak at m/z 270 (RT.16.412) is due to M^+ [$C_{17}H_{32}O_2$]⁺. Fig.4 shows the mass spectrum of methyl stearate. The signal at m/z 298 (R.T.18.426) corresponds M^+ [$C_{19}H_{38}O_2$]⁺

171

213

227 24

280

157

Fig. 4: Mass spectrum of methyl stearate.

115

Antimicrobial assay

The paper disc diffusion method was used to screen the antimicrobial potential of *Aristolochia bracteolata* oil against five standard human pathogens. The average of the diameters of the growth of inhibition zones are presented in Table (5). The oil showed moderate activity against *Escherichs coli*, *Staphylococcus aureus* and the fungal species *Candida albicans*. However, the oil was inactive against *Pseudomonas aeruginosa* and *Bacillus subtilis*.

Table 5: The antimicrobial activity of Aristolochia bracteolateoil.

Туре	Sa	Bs	Ec	Ps	Ca
Oil(100mg/ml)	15		16	1	15
Ampicilin(40mg/ml)	30	15			
Gentacycin(40mg/ml)	19	25	22	21	
Clotrimazole(30mg/ml)					38

(<9mm: inactive, 9-12mm: partially active, 13-18mm: active: > 18 mm very active). Ec: *Escherichs coli*.

Ps: Pseudomonas aeruginosa.

REFERENCES

- 1. Li YP, Wu S, Ran A, Xu DY, Wei JM, Zhao ZL. Aristolochia Bracteolate Retz. Attenuates Hyperuricemia in a Metabolic Arthritis Rat Model. *Afr J Tradit Complement Altern Med*, 2017; 14(4): 180-187. doi:10.21010/ajtcam.v14i4.21.
- De Groot H, Wanke S, Neinhuis C. Revision of the genus Aristolochia (Aristolochiaceae) in Africa, Madagascar and adjacent islands. *Bot J Linn Soc.*, 2006; 151(2): 219-238. doi:10.1111/j.1095-8339.2006.00511.
- 3. Samia HAR, Elmalik KH, Khalid HS. Therapeutic Effect of Aristolochia bractealata Extract Against Experimental Trypanosoma evansi Infection. *Int J Trop Med*, 2006; 1(4): 170-172.
- Bharath Kumar R, Suryanarayana B. Ethnomedicinal recipes for digestive ailments and stomachic problems & allied diseases from tribals of Sriharikota island, Andhra Pradesh. *Int J Pharma Bio Sci.*, 2014; 5(1): B468-B482.
- Mathew LS. Ethnobotanical Survey on Wild Edible and Medicinal Plants in Torit County, Eastern Equatoria State, South Sudan. *Thesis Submitt to Biol Dep Sch Educ Univ Libr Sch Post Grad Univ Juba.*, 2016.
- 6. Negi PS, Anandharamakrishnan C, Jayaprakasha GK. Antibacterial activity of Aristolochia bracteata root extracts. *J Med Food*, 2003; 6(4): 401-403.
- Ahmed EHM, Nour BYM, Mohammed YG, Khalid H s. Antiplasmodial Activity of Some Medicinal Plants Used in Sudanese Folk-medicine. *Environ Health* Insights, 2010; 4(February). doi:10.4137/EHI.S4108.
- 8. Kavitha D, Nirmaladevi R. Assessment of Aristolochia Bracteolata Leaf Extracts for Its Biotherapeutic Potential, Vol.8; 2010.
- 9. Abdelgadir AA, Ahmed EM, Eltohami MS. Isolation, Characterization and Quantity Determination of Aristolochic Acids, Toxic Compounds in Aristolochia bracteolata L. *Env Heal Insights*, 2011; 5: 1-8.

Sa: *Staphylococcus aureus*. Bs: *Bacillus subtilis*. Ca: *Candida albicans*.

- Achenbach H, Fischer A. 6-O-beta-d-Glucoside of aristolochic acid IIIa and other components from the roots of Aristolochia baetica. *Planta Med*, 1997; 63: 579.
- 11. Chitme HR, Malipatil M, Chandrashekhar VM, Prashant PM. Antiallergic activity of Aristolochia bracteolata Lank in animal model. *Indian J Exp Biol.*, 2010; 48(1): 46-52.
- 12. Khandelwal KR. *Practical Pharmacognosy Techniques and Experiments*. Pune: Nirali Prakashan, 2005.
- Devi K, Kanimozhi S, Suganyadevi P. Phytochemical screening and biological property of Aristolochia bracteolata. *J Pharm Res.*, 2011; 4(5): 1509 – 1514.
- 14. FDA. Guidance for Industry, Clinical development programs for drugs, devices, and biological products for the treatment of rheumatoid arthritis, 1999.
- 15. National Committee for Clinical Laboratory Standards (NCCLS) Performance standards for antimicrobial susceptibility testing; ninth informational supplement, Wayne, Pensilvania document M100-S9, 1999; 19.