Research Artícle

ISSN 2454-2229

World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org

SJIF Impact Factor: 6.129

CHARACTERIZATION OF FORCE DEGRADATION ASSAY METHOD EVALUATION FOR SIMULTANEOUS ESTIMATION OF MAGALDRATE AND SIMETHICONE IN SUSPENSION DOSAGE FORM USING UPLC-MS/MSⁿ

Meher Afrin*¹, Dr. Osman Ahmed¹, Ashraf Unnisa¹, Mohammed Akthar Sulthana¹ and Dr. Anas Rasheed²

¹Department of Pharmaceutical Analysis, Deccan School of Pharmacy, Hyderabad. ²CSO, Gaelib Medications Private Limited, Hyderabad.

Corresponding Author: Meher Afrin Department of Pharmaceutical Analysis, Deccan School of Pharmacy, Hyderabad.

Article Received on 24/09/2021

Article Revised on 14/10/2021

Article Accepted on 04/11/2021

ABSTRACT

In order to accomplish separation under optimal circumstances following a series of experimental trials, it is necessary to summarise the results. A stationary phase such as the Hypersil BDS C18 (100 mm x 2.1 mm, 1.7 m) column was the most appropriate since it generated symmetrical peaks with high resolution and a very excellent sensitivity, as well as a very good resolution and sensitivity. The flow rate was kept constant at 1.2 mL min-1, indicating acceptable resolution. The reaction of Magaldrate and Simethicone in suspension dose form to the PDA detector was investigated, and it was discovered that the optimal wavelength was 230 nm, which had the maximum sensitivity. Magaldrate and Simethicone were separated using a combination of two solutions, Methanol and chloroform in a 50:50 percent volume ratio, with gradient programming as the mobile phase at 1.2mL/min. This mixture was determined to be an acceptable mobile phase for separation of Magaldrate and Simethicone. The temperature of the column was kept at room temperature.

KEYWORDS: Suspension dosage form, Magaldrate and Simethicone.

INTRODUCTION

Chemical stability of MAGALDRATE AND SIMETHICONE is a matter of great concern as it affects the safety and efficacy of the finished drug product. Forced degradation studies provide data to support identification of possible degradants; degradation pathways and intrinsic stability of the MAGALDRATE AND SIMETHICONE molecule and validation of stability indicating analytical procedures. (ICH Q2 (R1), 2005).

A detailed literature revealed that several analytical methods have been reported for the determination of MAGALDRATE AND SIMETHICONE in pharmaceutical oral dosage forms. In our present knowledge, there is no method reported for the forced degradation estimation studies of AND SIMETHICONE MAGALDRATE in pharmaceutical oral dosage form by UPLC-MS/MSⁿ.

As per the stringent regulatory requirements recommended by the ICH and regulatory agencies, it is mandatory and important to identify and structurally characterize any impurity formed during production and stability testing, exceeding the identification threshold. Various analytical instruments and advanced hyphenated techniques are routinely used to carry out the impurity profile study.

The present work aims with the development of method to separate the degradation product by preparative UPLC and subjected to ESI-MS/MS. The study describes the separation of different impurities of MAGALDRATE AND SIMETHICONE, as well as the development and validation of a stability-indicating RP-UPLC method for the estimation of degradation and process-related impurities of MAGALDRATE AND SIMETHICONE. Forced degradation studies were performed on the drug product to show the stability-indicating nature of the method. These studies were performed in accordance with established ICH guidelines.

EXPERIMENTAL METHODOLOGY

Preparation of Standard Stock Solution Preparation of Diluent

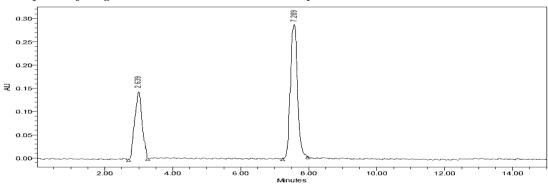
In order to achieve the separation under the optimized conditions after experimental trials that can be summarized. Stationary phase like Hypersil BDS C18 (100 mm x 2.1 mm, 1.7 μ m) column was most suitable one, since it produced symmetrical peaks with high

resolution and a very good sensitivity and with good resolution. The flow rate was maintained 1.2 mL min-1 shows good resolution. The PDA detector response of Magaldrate and Simethicone was studied and the best wavelength was found to be 240 nm showing highest sensitivity.

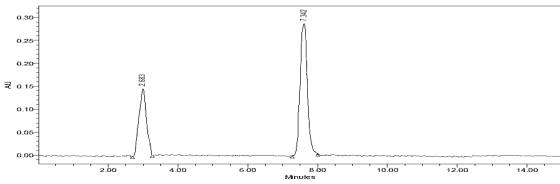
The mixture of two solutions methanol and acetonitrile in the ratio of 55:45% v/v with gradient programming was used as mobile phase at 1.2mL/min was found to be an appropriate mobile phase for separation of Magaldrate and Simethicone. The column was maintained at ambient temperature.

Preparation of internal standard solution

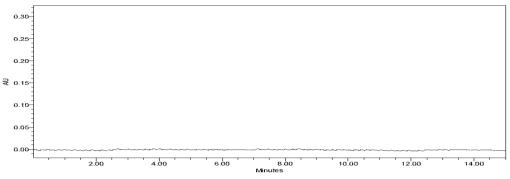
Weighed accurately about 10 mg of Magaldrate and Simethicone working standard and transfer to 100 ml


volumetric flask, add 50 ml of mobile phase and sonicate to dissolve it completely and then volume was made up to the mark with mobile phase to get 100 μ g/ml of standard stock solution of working standard. Then it was ultrasonicated for 10 minutes and filtered through 0.20 μ membrane filter.

Preparation of Magaldrate and Simethicone standard solution

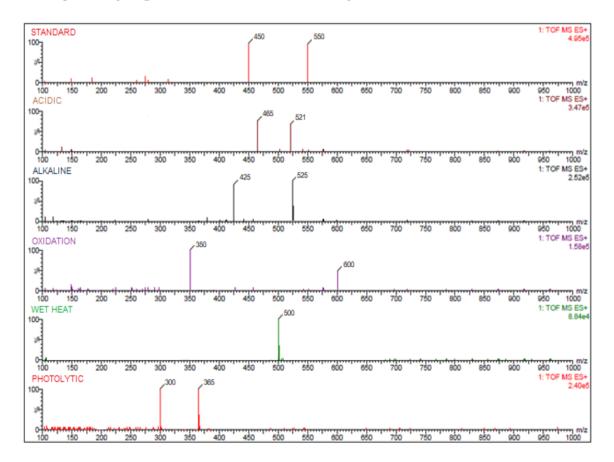

Weighed accurately about 10 mg of Magaldrate and Simethicone and transfer to 100 ml volumetric flask, add 50 ml of mobile phase and sonicate to dissolve it completely and then volume was made up to the mark with mobile phase to get 100 μ g/ml of standard stock solution of working standard. Then it was ultrasonicated for 10 minutes and filtered through 0.20 μ membrane filter.

Magaldrate and Simethicone			
Method development by UPLC OPTIMISED TRIAL			
System	UPLC		
Stationary Phase	C18		
"Mobile Phase"	"Methanol and Acetonitrile in the ratio of 55:45 %v/v"		
Injection volume	20µl		
Temperature	Ambient		
Flow rate	1.2 mL/min		
UV detection	240 nm		
Retention Time	Magaldrate – 7.289mins;		
	Simethicone – 2.639 mins		
Inference	"Better resolution of the peaks with clear base line separation was found."		


Method development of Magaldrate and Simethicone in UPLC System

Chromatogram of standard preparation of Magaldrate and Simethicone (Methanol and Acetonitrile in the ratio of 55:45 %v/v)

Chromatogram of test preparation of Magaldrate and Simethicone (Methanol and Acetonitrile in the ratio of 55:45 $\frac{1}{\sqrt{v}}$



Blank Chromatogram of Magaldrate and Simethicone (Methanol and Acetonitrile in the ratio of 55:45 %v/v)

Gradient Composition of Magaldrate and Simethicone

Time Interval (Mins.)	Solvent – A% (Sodium phosphate buffer)	Solvent – B% (Mobile Phase)
0-2	0	100
2-4	0	100
4-6	15	85
6-8	20	80
8-10	20	80
10-12	0	100
12-14	0	100

Gradient Composition of Magaldrate and Simethicone in UPLC System

LCMS

Analyte	Observed ion mass (Da)	Proposed formula	Calculated mass (Da)
Unknown	300.42	C13H23N3O3S	301.40
Unknown	350.46	C16H19N3O4S	349.40
Unknown	365.36	C16H19N3O5S	365.40
Unknown	425.45	C15H27N3O7S2	425.52
Unknown	450.35	C16H24N3O6S3	450.57
Unknown	465.32	C16H24N4O6S3	464.58
Unknown	500.25	C16H28N4O6S4	500.68
Unknown	521.47	C15H28N4O6S5	520.73
Unknown	525.13	C15H32N4O6S5	524.76
Unknown	550.87	C15H26N4O6S6	550.78
Unknown	600.23	C15H28N4O7S7	600.86

Lcms interpretation Summary of Results

Parameters	Acceptance Criteria	Value Found	Inference
Linearity Range (µg/ml)	Linear Regression	<i>MAG</i> - 20-1000 (μg/ml) <i>SIM</i> - 20-100 (μg/ml)	The concentration of linearity range was found to be Linear.
Correlation	Correlation Coefficient of	MAG - 0.999	It is found to be under the acceptance
Coefficient	$r^2 \ge 0.995$	<i>SIM -</i> 0.999	criteria.
Method Precision (%RSD)	%RSD nmt 2%	MAG - 0.01%, SIM - 0.02%	The Method Precision is found to be precised.
Accuracy	The % recoveries should be	MAG - 98.69%	The good recoveries shows the method is
(%Recovery)	in between 98-102% w/w	<i>SIM -</i> 98.98%	Accurate.
LOD (µg/ml)	Signal to noise ratio (S/N) ≥ 3.3	MAG - 0.0029 μg/mL SIM - 0.0052 μg/mL	It is found to be under the acceptance criteria.
LOQ (µg/ml)	Signal to noise ratio (S/N) ≥ 10.1	MAG - 0.0091 μg/mL SIM - 0.0160 μg/mL	It is found to be under the acceptance criteria.
Robustness (Low, Actual, High) (%RSD)	%RSD nmt 2%	MAG - (0.03%, 0.02%, 0.02%) SIM - (0.04%, 0.02%, 0.03%)	With small deliberate variations in the method parameters has proven that the method is robust.
Intra Day (%RSD)	%RSD nmt 2%	MAG - 0.02% SIM - 0.04%	The repeatability is excellent, indicating the ruggedness of the method.
Inter Day (%RSD)	%RSD nmt 2%	MAG - 0.01% SIM - 0.03%	The reproducibility is excellent, indicating the ruggedness of the method.
Analysis of Formulation (% Assay)	The % Assay should be in between 98-102% w/w	MAG -99.28 % SIM -99.41 %	Satisfactory quantitative detection of the analytes

SUMMARY OF RESULTS

Conclusion

For the ultrafast and gushed item, a unique, accurate, and special ultra chromatographic approach was developed for analysing the dose distribution pattern in bulk pharmaceutical and applications, and in specifically for this medication, in particular. Because it is associated with care, a clean assessment technique that is not in contradiction with the execution of the strategy may be used to accomplish this goal without causing confusion. It is both effective and fast to implement this strategy because of its high impact and repetition while also maintaining accuracy. All of the data indicated that the approach looked to be acceptable in terms of approval parameters being authorised using the technique.

REFERENCES

 Y. C. Mayur*, Osman Ahmad, V. V.S. Rajendra Prasad, M. N. Purohit, N. Srinivasulu, S. M. Shanta Kumar, "Synthesis of 2-Methyl N¹⁰-Substituted Acridones as Selective Inhibitors of Multidrug Resistance (MDR) Associated Protein in Cancer

www.wjpls.org

Cells". Medicinal Chemistry, Bentham Science Publishers, 2008; 4(5): 457-465(9).

- Osman Ahmed*, Pankaj Sharma, Jaya Sharma, "Synthesis and Pharmacological Study of Azetidinone Derivatives" International Journal of Pharmaceutical Science & Education, 2013; 11-18.
- 3. Osman Ahmed*, Pankaj Sharma, Jaya Sharma, Dr. Indrajeet Singhvi, "Synthesis and Anticonvulsant Activity of Some Substituted Azetidinone Derivatives" Asian Journal of Pharmaceutical Research and Development, 2013; 5.
- 4. Osman Ahmed*, Dr. Md Salahuddin, Vinutha. K, Pankaj Sharma. "Design, Synthesis and Biological Evaluation of Some Novel Substituted Thiazolidinone Derivatives as Potent Antihyperglycemic Agents". International Journal of Pharmaceutical Research Scholars, 2013; 2(3).
- Osman Ahmed*, Md Salahuddin, Pankaj Sharma, Indrajeet Singhvi "Synthesis and biological investigations of some new thiazolidinone derivatives as anti-tubercular agents", American Journal of Pharmtech Research, 2013; 3: 193-201.
- 6. Osman Ahmed*, Md. Salahuddin, Iffath Rizwana, M.A.Aleem, Pankaj Sharma, "Synthesis, Characterization and Biological Evaluation of Novel thiazolidinone derivatives as Anti-inflammatory Agents", Indo American Journal of Pharmaceutical Research, 2013; 3(10): 8121-8126.
- Osman Ahmed*, Pankaj Sharma, Indrajeet Singhvi. "Synthesis and Anti-Hyperglycemic activity of Some Novel Thiazolidinone Derivatives". Indo American Journal of Pharmaceutical Research, 2014; 4(02): 1008-1014.
- Osman Ahmed*, Pankaj Sharma, Indrajeet Singhvi. "Anticonvulsant Activity of Some Novel Substituted Thiazolidinone Derivatives against Maximal Electro Shock Induced Seizure". International Journal of Pharmaceutical Research Scholars, 2014; 3(1): 289-294.
- Osman Ahmed*, Mohd Haseeb Ur Rahman, Abdul Najeeb, Sk. Md. Noorullah, S.A.Azeez Basha, Design, "Synthesis and Anti- inflammatory activity of certain fused Novel Thienopyrimidines Derivatives", International Journal of Pharmaceutical Research Scholars, 2013; 2(4): 82-87.
- 10. Syed Aamer Ali, SK Danda, Syed Abdul Azeez Basha, Rasheed Ahmed, Osman Ahmed, Mohd Muqtader Ahmed. "Comparision of uroprotective activity of reduced glutathione with Mesna in Ifosfamide induced hemorrhagic cystitis in rats". Indian Journal of Pharmacology, 2014; 46:105-108.
- Osman Ahmed*, Syed Azeemuddin Razvi, T K Md Rayees, M A Nafay Shoeb, Md Salahuddin. "Synthesis Characterization and Anti-inflammatory activity of some substituted pyrimidine derivatives". Indo American Journal of Pharmaceutical Research, 2014; 4(05): 2301-2306. DOI: 10.1044/1980iajpr.14369.

- Osman Ahmed*, Farhana Begum, Nishat Fatima, Md. Salahuddin. "Synthesis and Biological Activity of Some Novel Pyrimidine Derivatives". International Journal of Pharmaceutical Research Scholars, 2014; 3(4): 103-108.
- Ms. Farhana Begum, Osman Ahmed, Md. Salahuddin, Nishat Fatima. "Synthesis, Characterization and Anti-Hyperglycemic Activity of Novel Pyrimidine Derivatives". Indo American Journal of Pharm Research, 2014; 4(11): 5501-5506. DOI: 10.1044/19 80-iajpr.141042
- 14. Osman Ahmed*, Mehruq Fatima, Juveriya Parveen, Asma Farheen, Ayesha Binth Saleh, Dr. Syed Mahmood Ahmed. Changes in Pulmonary Function Test (PFT) Before and After Adding Tiotropium Bromide to the Ongoing Therapy of Severe Persistant Asthamatics. Indo American Journal of Pharm Research, 2015; 5(01): DOI: 10.1044/1980iajpr.141266.
- 15. Mohd Khader, Mohd Mahboob Shareef, Syeda Huda Noorain, Osman Ahmed. Synthesis, Characterization and Biological Activity of Some Novel Pyrimidine Derivatives. Indo American Journal of Pharm Research, 2015; 5(03).
- 16. Fayeza Batool, Osman Ahmed, Anas Rasheed. An Assay Method for the Simultaneous Estimation of Acetaminophen and Tramadol using RP-HPLC Technology. Indo American Journal of Pharmaceutical Research, 5(7): 2605-2610.
- 17. Fayeza Batool, Osman Ahmed, Anas Rasheed. A Stability Indicating Method for the Simultaneous Estimation of Acetaminophen and Tramadol in Pharmaceutical Dosage Form. American Journal of PharmTech Research, 2015; 5(04): 674-683.
- Humeera Rafeeq, Talath Fatima, Afiya Ansari, Osman Ahmed. Personalized Medicine - A Boon For Treating Rheumatoid Arthritis. Indo American Journal of Pharmaceutical Research, 5(8).
- 19. Humeera Rafeeq, Osman Ahmed, M.A Khaleq, Samee A, Amer M. Progress In The Treatment of Neuroblastoma. Indo American Journal of Pharmaceutical Research, 5(8).
- 20. Talath Fatima, Osman Ahmed, Amer Mahboob, Afiya Ansari, Amatullah Fathimah. Personalized Medicine - A Review – Progress In The Treatment of Non Small Cell Lung Cancer (NSCLC) In A New Era of Personalised Medicine. Indo American Journal of Pharmaceutical Research, 5(8).
- Talath Fatima*, Osman Ahmed, Afiya Ansari, Amatullah Fathimah, Amer Mahboob. Novel Therapeutic Approaches to a Chronic Inflammatory Disorder – Asthma. International Journal of Pharmaceutical Research Scholars, 2015; V-4,I-3: 112-117.
- 22. Humeera Rafeeq*, Osman Ahmed, Sohail Ali, Mohd Younus, Mohd Bilal. A Review on Mowat-Wilson Disorder, International Journal of Pharmaceutical Research Scholars, 2015; V-4, I-3: 176-181.

- Humeera Rafeeq*, Osman Ahmed, Fayeeza Ameen, Amreen Sultana, Maryam Fatima. A Review on Harlequin Ichthyosis. International Journal of Pharmaceutical Research Scholars, 2015; V-4, I-3: 189-193.
- 24. Anees Begum*, Osman Ahmed. An Assay Method for the Simultaneous Estimation of Albuterol and Ipratropium Bromide using RP- HPLC Technology. International Journal of Pharmaceutical Research Scholars, 2016; V-5, I-4: 33-37.
- 25. Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 18-24. http://dx.doi.org/10.21477/ijapsr.v2i2.7774.
- 26. Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775.
- 27. Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- 28. Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- 29. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(4): 200-205.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholcodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4(6): 572-579.
- 31. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 141-145.
- 32. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 168-172.
- 33. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 34. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European

Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.

- 35. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 36. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100.
- 37. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101.
- 38. Neha Naaz*, Khaja Uzair ul Hasan, Aaminah Najmus Sahar, Prof. Dr. Osman Ahmed. Plights and Predicaments in the Pharmacy Industry. Indo American Journal of Pharmaceutical Research, 2017; 7(11).
- 39. Syed Vakeeluddin*, Osman Ahmed, Kauser Fathima, Analytical Method Development and Validation for the Simultaneous Estimation of Budesonide and Formoterol in Bulk and Dosage Form Using RP-HPLC Method, Indo Am. J. P. Sci, 2017; 4(07).
- 40. Dr. Osman Ahmed*, Syed Vakeeluddin, Kauser Fathima. A Stability Indicating Method for the Simultaneous Estimation of Budesonide and Formoterol in Bulk and Dosage Form. Indo American Journal of Pharmaceutical Research.
- 41. Kauser Fathima*, Dr. Osman Ahmed, Syed Vakeeluddin, Analytical Method Development and Validation for the Simultaneous Estimation of Ofloxacin and Metronidazole in Bulk and Dosage Form Using RP-HPLC, Indo Am. J. P. Sci, 2017; 4(07).
- 42. Dr. Osman Ahmed*, Kauser Fathima, Syed Vakeeluddin. A Stability Indicating Method for the Simultaneous Estimation of Ofloxacin and Metronidazole in Bulk and Dosage Form. Indo American Journal of Pharmaceutical Research, 2018; 8(01).
- 43. Mohd Shafi, Osman Ahmed, Anas Rasheed, Validation Of A UPLC Method With Diode Array Detection Using C18 Column For The Determination Of Fluorometholone In Parenteral Dosage Form, Indo Am. J. P. Sci, 2018; 05(07).
- 44. Validation Of A Forced Degradation Uplc Method For Estimation Of Glibenclamide In Oral Dosage Form, Dr. Osman Ahmed, Mohd Kareem Ahmed and Dr. Anas Rasheed. World Journal of Pharm. and Life Sci., 2019; 5(10): 74-82.

- 45. Evaluation And Validation Of A UPLC Method For Simultaneous Estimation Of Glimepiride, Metformin And Voglibose In Oral Dosage Form, Mohd Kareem Ahmed, Dr. Osman Ahmed and Dr. Anas Rasheed. European Journal Of Biomedical and Pharmaceutical Sciences, 2019; 6(13): 329-337.
- 46. Stability Indicating Method Evaluation And Validation For Simultaneous Estimation Of Glimepiride, Metformin And Voglibose In Oral Dosage Form Using LCMS, Mohd. Kareem Ahmed, Dr. Osman Ahmed and Dr. Anas Rasheed European Journal Of Biomedical and Pharmaceutical Sciences, 2019; 6(13): 338-349.
- 47. Stability Indicating Method Evaluation And Validation For Simultaneous Estimation Of Metformin And Sitagliptin In Oral Dosage Form Dr. Osman Ahmed, Mohd Kareem Ahmed and Dr. Anas Rasheed, European Journal Of Pharmaceutical And Medical Research, 2019; 6(12): 494-502.
- 48. Evaluation And Validation Of A UPLC Method For Simultaneous Estimation Of Metformin And Sitagliptin In Oral Dosage Form Dear Dr. Osman Ahmed, Mohd Kareem Ahmed and Dr. Anas Rasheed European Journal Of Pharmaceutical And Medical Research, 2019; 6(12): 494-502.
- Evaluation And Validation Of A UPLC Method For Estimation Of Amoxyclav In Oral Dosage Form. Dr. Osman Ahmed*, Sumaiya Fatima and Dr. Anas Rasheed, World Journal of Pharm. and Life Sci. 2020; 6(9): 107-113.
- 50. RESPULES *Sumaiya Fatima, Dr. Osman Ahmed and Dr. Anas Rasheed, World Journal of Pharm. and Life Sci., 2020; 6(9): 68-77.
- 51. POLYMORPHISM Sumaiya Fatima*, Dr. Osman Ahmed and Dr. Anas Rasheed World Journal of Pharm. and Life Sci., 2020; 6(9): 78-93.
- 52. Chemical force degradation assay method evaluation for simultaneous estimation of amoxicillin and potassium clavulanate in oral dosage form Sumaiya Fatima*, Dr. Osman Ahmed and Dr. Anas Rasheed, European Journal Of Pharmaceutical And Medical Research, 2020; 7(9): 320-325.
- 53. Characterization of force degradation assay method evaluation for simultaneous estimation of amoxicillin and potassium clavulanate in oral dosage form using UPLC-MS/MSN Sumaiya Fatima*, Dr. Osman Ahmed and Dr. Anas Rasheed ejbps, 2020; 7(9): 285-294.
- 54. Evaluation and validation of a uplc method for simultaneous estimation of amoxicillin and potassium clavulanate in oral dosage form. Sumaiya Fatima*, Dr. Osman Ahmed and Dr. Anas Rasheed. European Journal Of Pharmaceutical And Medical Research, 2020; 7(9): 326-335.
- 55. Spiked force degradation assay method evaluation for estimation of amoxyclav in oral dosage form. Dr. Osman Ahmed*, Sumaiya Fatima and Dr. Anas Rasheed. World Journal of Pharm. and Life Sci., 2020; 6(9): 185-191.

- 56. Anas Rasheed Et.Al; Validation Of A Uplc Method With Diode Array Detection Using C18 Column For The Determination Of Fluorometholone In Parenteral Dosage Form, Indo American Journal Of Pharmaceutical Sciences, Iajps, 5(7): 6209-6215.
- 57. Anas Rasheed Et.Al; Analytical Method Development And Validation For The Determination Of Fluorometholone Using C8 Column In Parenteral Dosage Form By Uplc Technology, World Journal Of Pharmaceutical And Life Sciences, Wjpls, 2018; 4(8): 106-109.
- 58. Anas Rasheed Et.Al; Analytical Stability Indicating Uplc Assay And Validation Using C18 Column For Fluorometholone In Parenteral Dosage Form, World Journal Of Pharmaceutical And Life Sciences, Wjpls, 2018; 4(8): 110-114.
- 59. Anas Rasheed Et.Al; Validation Of A Forced Degradation Uplc Method Using C8 Column For Fluorometholone In Parenteral Dosage Form, European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2018; 5(8): 311-318.
- 60. Anas Rasheed Et.Al; Analytical Separation And Characterisation Of Degradation Products Method For The Estimation Of Impurities In Fluorometholone In Parenteral Dosage Form, European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2018; 5(8): 319-324.
- 61. Anas Rasheed Et.Al; Validation Of A Forced Degradation Uplc Method For Estimation Of Glibenclamide In Oral Dosage Form, World Journal Of Pharmaceutical And Life Sciences, Wjpls, 2019; 5(10): 74-82.
- 62. Anas Rasheed Et.Al; Evaluation And Validation Of A Uplc Method For Simultaneous Estimation Of Glimepiride, Metformin And Voglibose In Oral Dosage Form, European Journal Of Biomedical And Pharmaceutical Sciences, Ejbps, 2019; 6(13): 329-337.
- 63. Anas Rasheed Et.Al; Stability Indicating Method Evaluation And Validation For Simultaneous Estimation Of Glimepiride, Metformin And Voglibose In Oral Dosage Form Using Lcms, European Journal Of Biomedical And Pharmaceutical Sciences, Ejbps, 2019; 6(13): 338-349.
- 64. Anas Rasheed Et.Al; Evaluation And Validation Of A Uplc Method For Simultaneous Estimation Of Metformin And Sitagliptin In Oral Dosage Form, European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2019; 6(12): 365-371.
- 65. Anas Rasheed Et.Al; Stability Indicating Method Evaluation And Validation For Simultaneous Estimation Of Metformin And Sitagliptin In Oral Dosage Form, European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2019; 6(12): 494-502.
- 66. Anas Rasheed Et.Al; Uplc Method Optimisation And Validation For The Estimation Of Sodium Cromoglycate In Pressurized Metered Dosage Form,International Journal Of Applied

Pharmaceutical Sciences And Research, 2017; 2(2): 18-24.

- 67. Anas Rasheed Et.Al; Uplc Method Development And Validation For The Determination Of Chlophedianol Hydrochloride In Syrup Dosage Form International Journal Of Applied Pharmaceutical Sciences And Research, 2017; 2(2): 25-31.
- Anas Rasheed Et.Al; Analytical Method Development And Validation For The Determination Of Codeine In Syrup Dosage Form Using Uplc Technology, World Journal Of Pharmaceutical And Life Sciences, Wjpls, 2017; 3(5): 141-145.
- 69. Anas Rasheed Et.Al; Validation Of A Uplc Method With Diode Array Detection For The Determination Of Noscapine In Syrup Dosage Form European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2017; 4(6): 510-514.
- 70. Anas Rasheed Et.Al; Validation Of A Forced Degradation Uplc Method For Estimation Of Beclomethasone Dipropionate In Respules Dosage Form Indoamerican Journal Of Pharmaceutical Research, 2017; 7(05): 8608-8616.
- 71. Anas Rasheed Et.Al; Analytical Stability Indicating Uplc Assay And Validation Of Ciclesonide In Dry Powder Inhaler Dosage Form European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2017; 4(7): 523-529.
- 72. Anas Rasheed Et.Al; Analytical Stability Indicating Uplc Assay And Validation Of Fluticasone Propionate In Nasal Spray Inhaler Dosage Form World Journal Of Pharmaceutical And Life Sciences, Wjpls, 2017; 3(5): 168-172.
- 73. Anas Rasheed Et.Al; Stability Indicating Uplc Method Optimisation And Validation Of Triamcinolone In Syrup Dosage Form World Journal Of Pharmaceutical And Life Sciences, Wjpls, 2017; 3(4): 200-205.
- 74. Anas Rasheed Et.Al; Stability Indicating Uplc Method Optimisation And Validation Of Pholcodine In Bulk Dosage Form European Journal Of Biomedical And Pharmaceutical Sciences, Ejbps, 2017; 4(6): 572-579.
- 75. Anas Rasheed Et.Al; Analytical Stability Indicating Uplc Assay And Validation Of Dextromethorphan In Syrup Dosage Form European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2017; 4(6): 548-554.
- 76. Anas Rasheed Et.Al; Stability Indicating Uplc Method Optimisation And Validation Of Acetylcysteine In Syrup Dosage Form European Journal Of Pharmaceutical And Medical Research, Ejpmr, 2017; 4(7): 485-491.
- 77. Anas Rasheed Et.Al; Analytical Development And Validation Of A Stability-Indicating Method For The Estimation Of Impurities In Budesonide Respules Formulation International Journal Of Applied Pharmaceutical Sciences And Research, 2017; 2(3): 46-54.

- 78. Anas Rasheed Et.Al; Analytical Separation And Characterisation Of Degradation Products And The Development And Validation Of A Stability-Indicating Method For The Estimation Of Impurities In Ipratropium Bromide Respules Formulation International Journal Of Applied Pharmaceutical Sciences And Research, 2017; 2(3): 55-63.
- 79. Anas Rasheed Et.Al; Analytical Separation And Characterisation Of Degradation Products And The Development And Validation Of A Stability-Indicating Method For The Estimation Of Impurities In Levosalbutamol Respules Formulation International Journal Of Applied Pharmaceutical Sciences And Research, 2017; 2(3): 83-92.
- 80. Anas Rasheed Et.Al; Analytical Separation And Characterisation Of Degradation Products And The Development And Validation Of A Stability-Indicating Method For The Estimation Of Impurities In Montelukast Oral Dosage Formulation. International Journal Of Applied Pharmaceutical Sciences And Research, 2017; 2(3): 69-77.
- 81. Anas Rasheed Et.Al; An Assay Method For The Simultaneous Estimation Of Acetaminophen And Tramadol Using Rp-Hplc Technology Indo American Journal Of Pharmaceutical Research, 2015; 5(07).
- 82. Anas Rasheed Et.Al; A Stability Indicating Method For The Simultaneous Estimation Of Acetaminophen And Tramadol In Pharmaceutical Dosage Formamerican Journal Of Pharma Tech Research, 5(04): 673-683.
- 83. Anas Rasheed Et.Al; Analytical Method Development And Validation For The Simultaneous Estimation Of Aspirin, Clopidogrel Bisulphate And Atorvastatin Calcium In Tablet Dosage Form, American Journal Of Pharma Tech Research, 4(04): 534-541.