ANXIOLYTIC PROPERTY OF HYDRO-ALCOHOL EXTRACT OF MORINGA OLEIFERA AND ITS EFFECT ON BEHAVIORAL ACTIVITIES OF RAT

Bakou Niangoran François*1, B. A. Abdoulaye2, Guiro Hamidou2 and Atayi E.3

1Unit of Animal Physiology, Jean Lorougnon GUEDE University, Daloa, (Côte d’Ivoire).
2Laboratory of Neuroscience, UFR Biosciences, Felix HOUPOUET-BOIGNY University, Abidjan, (Côte d’Ivoire).

Corresponding Author: Bakou Niangoran François
Unit of Animal Physiology, Jean Lorougnon GUEDE University, Daloa, (Côte d’Ivoire).

ABSTRACT

Objective: The aim of the present work is to evaluate the anxiolytic effect of hydroalcoholic extract of leaves from Moringa oleifera in rat. Materials and Methods: The hole-board test, elevated plus-maze paradigm and open field test, were used to assess the anxiolytic activity of hydroalcoholic extract of leaves from Moringa oleifera. The extract of Moringa oleifera (5, 10, and 25mg/kg, i.p) and diazepam (1 mg/kg, i.p) were administered 30 min before the tests. Results: The results showed that extract of Moringa oleifera (10 and 25 mg/kg, i.p) significantly increased the number and duration of head poking in the hole-board test. In the elevated plus-maze, the extract significantly increased the exploration of the open arm in similar way to that of diazepam. At a dose of 10 and 25 mg/kg i.p. the extract significantly increased both the time spent in and the entries into the open arm by rat. Further, in the open field test, the extract significantly increased rearing, assisted rearing, and number of squares traversed, all of which are demonstrations of exploratory behavior. Conclusion: The results of the present study suggest that a hydroalcoholic extract of Moringa oleifera leaves may possess an anxiolytic effect.

KEYWORDS: Moringa oleifera, leaves, rat, anxiety activity.

INTRODUCTION

Anxiety disorder is a most common psychological behavioral disorder globally.[1] It leaves negative impact on the quality of life with life time prevalence about 15% and spontaneous remission about 14%.[2] This probably raise questions over the efficacy of the current therapeutic treatment or lack of understanding the neurobiological pathophysiology of anxiety disorder.[3] In general, anxiety disorders can be treated with certain psychotherapeutic drugs. Sedatives and hypnotics are medications that can reduce anxiety and induce the onset of sleep and maintain sleep time.[4] Benzodiazepines are commonly used because of their muscle-relaxant, sedative-hypnotic, and anticonvulsant effects.[5] However, the continued use of these currently available sedative-hypnotic treatments has serious side effects, from respiratory, digestive, and immune system dysfunctions to impaired cognitive function, physical dependence, and tolerance.[6] Therefore, finding novel therapeutic agents with fewer complications in the treatment of anxiety disorder, is of major interest to researchers.[7] Medicinal plant with traditional background of use in neurological diseases could be good candidates to find new anxiolytic agents. Moringa oleifera Lam. (M. oleifera) is a cruciferous plant that belongs to the Moringaceae family. M. oleifera is commonly called horseradish tree or drumstick tree by locals and is a popular staple in different parts of the world. M. oleifera is consumed not only for its nutritional values but also its medical benefits.[8] It has traditionally been widely used to improve health. Kings and queens used Moringa to improve their alertness and to maintain healthy skin. Other traditional uses of the genus are in healing skin infections, anxiety, asthma, wounds, fever, diarrhea, and sore throats.[9] Currently, M. oleifera is reported to enhance a broad range of biological functions including anti-inflammatory, anti-depression, anti-convulsivant, anti-diabetes, anti-cancer, hepatoprotective, and neuroprotective functions.[8,10,11,12,13] No scientific report regarding the in vivo anxiolytic activity of Moringa oleifera extract has been published. That’s why, the present study was undertaken to assess the possible anxiolytic effects following single administration of hydro ethanolic extract of leaves from Moringa oleifera in mice. For this purpose, we used the elevated plus-maze, Hole board and open field tests.

www.wjpls.org
MATERIALS and METHODS

Plant material
Fresh leaves of the plant were collected from Daloa, (Cote d’Ivoire) in November, 2019. The plant was identified and verified by botanist Professor from Jean Lorougon GUEDE university of Daloa (Cote d’Ivoire). The collected leaves were dried under a shade during two weeks and pulverized using the crushing assistance (IKAMAG RCT®). The powder of leaves obtained, constituted our sample to be analyzed.

Extract preparation
A 100 g sample of crushed Moringa oleifera was used for extraction. The sample was soaked overnight in 70% alcohol (30:70) and filtered using Whatman No.1 paper. The process was repeated twice by adding fresh solvent every time. The pooled extract was subjected to flash evaporation followed by lyophilization. The lyophilized sample was further analyzed to determine its anxiolytic property.

Animals
25 healthy adult male Swiss albino mice weighing (20–30 g) were obtained from the animal house of Jean Lorougon GUEDE University, Daloa. These animals were housed under standard environmental conditions. The mice were fed with FACI® (Fabrication d’Aliments de Côte d’Ivoire) pellets, groundnuts and dried fish. They had free access to drinking water ad libitum.

Drugs and chemicals
The standard drugs Diazepam and saline water were collected from Square Pharmaceuticals Ltd., Cote d’Ivoire. Distilled water which was used for dilution purpose was prepared was obtained from Jean Lorougon GUEDE university of Daloa (Cote d’ivoire).

Behavioral parameters used to test anxiolytic activity

Elevated plus-maze test
The elevated plus-maze (EPM) test consisted of two open arms (30 × 5 × 0.25 cm) and two closed arms (30×5×15 cm) emanating from a common central platform (5×5 cm). Two pairs of identical arms were opposite to each other. The entire apparatus was elevated to a height of 40 cm above floor level. At the beginning of the session, a mouse was placed at the centre of the maze, its head facing an open arm and allowed to explore the maze for 5 minutes, and the following parameters were scored: the time spent and number of entries in each type of arms. The plus maze was carefully cleaned with a wet towel after each animal test. The mice were randomly divided into five groups (5 mice/group). The control group received vehicle (saline water 0.1mL/mice), Diazepam (1 mg/kg b.w., IP) was used as the positive control or standard group and Moringa oleifera extract at doses of 5,10 and 20 mg/kg body weight, in the three remaining groups. After each trial, the EPM apparatus was wiped clean with alcohol (70%) Solution.

Open field test
Locomotor activity and exploratory behavior were assessed in an open field The apparatus consisted of a wooden box (60 × 60 × 30 cm³) with the floor divided into 16 squares (15 × 15 cm²). The apparatus was illuminated with a 40-W lamp suspended 100 cm above. Mice were treated with Moringa oleifera (5,10 and 20 mg/kg, i.p), diazepam (1 mg/kg, i.p.) was used as the positive control drug or vehicle (i.p.). After 30 min, they were placed individually in one of the corner squares. The number of rearing, assisted rearing (forepaws touching the wall of the apparatus) and squares traveled were counted for 5 min

Hole board test
The hole board apparatus consisted of a wooden chamber (40 × 40 × 25 cm³) with 16 holes (each of 3 cm diameter) evenly distributed on the floor. The apparatus was elevated to a height of 25 cm from the ground so that the mice could peep through the holes. The mice were treated with Moringa oleifera (5, 10 and 20 mg/kg, i.p), diazepam (1 mg/kg, i.p.) or distilled water (i.p) 30 min prior to test and kept in the apparatus. The numbers and the duration of head poking were recorded during the 5 min observation period.

Statistical analysis
Results are expressed as mean ± S.E.M. The statistical analysis of data was done using one way analysis of variance (ANOVA) followed by Dunnett's test. A probability level less than 0.05 was considered statistically significant.

RESULTS

Elevated plus maze test
The saline-treated mice spent 30.8 ± 1.2 s in the open arm and 249 ± 2.6 s in the closed arm, with 11.3 ± 4.5 entries into the open arm and 13.7 ± 2.6 entries into the closed arm. Moringa oleifera extract (5 and 10 mg/kg) and diazepam (1 mg/kg) induced significant (***P < 0.01) increase in the occupancy in the open arm. Moringa oleifera in the dose of 10 and 20 mg/kg did not cause a significant decrease in the time spent in the closed arm, whereas Moringa oleifera at a dose of 5 mg/kg and diazepam brought about a significant (**P < 0.01) decrease in the time spent in the closed arm. The animals treated with diazepam and Moringa oleifera (5 mg/kg) showed a decreased preference for the closed arm and significantly (**P < 0.01) increased entries into the open arm. Moringa oleifera at 10 and 20 mg/kg did not produce any significant increase in open arm entries. Table1.

www.wjpls.org
Table 1: Effect of *Moringa oleifera* on animals’ stay in the open and enclosed arms of the elevated plus-maze in mice (n=5).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time spent in the open arm (s)</th>
<th>Time spent in the enclosed arm (s)</th>
<th>Entries into open arm</th>
<th>Entries into enclosed arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl 10ml</td>
<td>30.8±1.2</td>
<td>249±2.6</td>
<td>11.3±4.5</td>
<td>13.7±2.6</td>
</tr>
<tr>
<td>DZP1mg/Kg</td>
<td>106±6.3**</td>
<td>161±4.5**</td>
<td>22.5±1.9**</td>
<td>10.7±1</td>
</tr>
<tr>
<td>MO5 mg/Kg</td>
<td>117±1.2**</td>
<td>140.2±2.4**</td>
<td>20.5±1.7**</td>
<td>11.5±2.1</td>
</tr>
<tr>
<td>MO10 mg/Kg</td>
<td>92.8±12**</td>
<td>219.8±1.8</td>
<td>10.3±4.1</td>
<td>12.5±2.4</td>
</tr>
<tr>
<td>MO20 mg/Kg</td>
<td>32.5±2.6</td>
<td>220.7±2.1</td>
<td>12.2±4.2</td>
<td>11.7±2.2</td>
</tr>
</tbody>
</table>

Open field test
The saline-treated mice traversed 87.2 ± 1 squares and showed 12.8 ± 1.2 assisted rearing and 5.5 ± 1.2 self-rearing during the test interval of 5 min. *Moringa oleifera* at 5 and 10mg/kg and diazepam brought about a significant (**P < 0.01) and dose-dependant increase in the number of squares traversed. The assisted rearing and self-rearing was significantly (*P < 0.05 and **P < 0.01, respectively) increased by *Moringa oleifera* (5 and 10 mg/kg) and diazepam; *Moringa oleifera* at 20 mg/kg did not produce a significant effect. Table 2.

Table 2: Effect of *Moringa oleifera* on rearing and locomotion in open field test model (n=5).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Time spent in the open arm (s)</th>
<th>Time spent in the enclosed arm (s)</th>
<th>Entries into open arm</th>
<th>Entries into enclosed arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl 10ml</td>
<td>30.8±1.2</td>
<td>249±2.6</td>
<td>11.3±4.5</td>
<td>13.7±2.6</td>
</tr>
<tr>
<td>DZP1mg/Kg</td>
<td>106±6.3**</td>
<td>161±4.5**</td>
<td>22.5±1.9**</td>
<td>10.7±1</td>
</tr>
<tr>
<td>MO5 mg/Kg</td>
<td>117±1.2**</td>
<td>140.2±2.4**</td>
<td>20.5±1.7**</td>
<td>11.5±2.1</td>
</tr>
<tr>
<td>MO10 mg/Kg</td>
<td>92.8±12**</td>
<td>219.8±1.8</td>
<td>10.3±4.1</td>
<td>12.5±2.4</td>
</tr>
<tr>
<td>MO20 mg/Kg</td>
<td>32.5±2.6</td>
<td>220.7±2.1</td>
<td>12.2±4.2</td>
<td>11.7±2.2</td>
</tr>
</tbody>
</table>

Hole board test
Each mouse was placed individually in the hole-board apparatus and the number of head pokes and the duration of head poking were noted. With the dose of 20 mg/kg, i.p., of *Moringa oleifera* there was no significant increase in number of head pokes when compared with vehicle. *Moringa oleifera* at 5 and 10 mg/kg, i.p., increased the number of head pokes significantly (**P < 0.01) and dose dependently. The duration of head poking was also significantly (**P < 0.01) increased by *Moringa oleifera* at all doses. The reference standard (diazepam, 1 mg/kg, i.p.)-treated group showed significant increase in exploratory activity (**P < 0.01). Table 3.

Table 3: Effect of *Moringa oleifera* on hole board (n=5).

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Duration on head poking (s)</th>
<th>Number of head poking</th>
</tr>
</thead>
<tbody>
<tr>
<td>NaCl 10ml</td>
<td>29.8±1.2</td>
<td>27.8±1.2</td>
</tr>
<tr>
<td>DZP1mg/Kg</td>
<td>71±6.4**</td>
<td>75±6.4**</td>
</tr>
<tr>
<td>MO5 mg/Kg</td>
<td>51±1.2**</td>
<td>49±1.2**</td>
</tr>
<tr>
<td>MO10 mg/Kg</td>
<td>75.8±12**</td>
<td>77.8±12**</td>
</tr>
<tr>
<td>MO20 mg/Kg</td>
<td>91.5±2.6**</td>
<td>28.1±2.6</td>
</tr>
</tbody>
</table>

DISCUSSION

The benzodiazepines (BZDs) are relatively safe and are widely used anxiolytic agents. These agents are known to act through the BZD-GABA receptors. The role of GABA in anxiety is well established. The EPM is one of the most popular animal tests for research on behavioral pharmacology of anxiety. It involves spontaneous or natural aversive stimuli, i.e., height, unprotected opening, and novelty. Several plants that are used in folk medicine to diminish anxiety are reported to bring about an increase in the exploration of the open arms in the EPM test. In EPM, naive mice will normally prefer to spend much of their allotted time in the closed arms. This preference appears to reflect an aversion towards open arms that is generated by fear of open spaces. Drugs that increase open arm exploration are considered as anxiolytics and the reverse holds true for anxiogenic. In our study, we noticed that *Moringa oleifera* (5 and 10 mg/kg) induced significant increases in both the number of entries and time spent in the open arms. The number of entries and the time spent in the closed arms were reduced in the extract-treated group as compared to the control group. The open-field apparatus provides information on anxiety-related behaviour characterized by natural aversion of rodents to an open brightly lit area. Animals are thus afraid of the centre and spend more time in the protective corners and in freezing state. Anxiolytics increase total locomotive activity resulting in a reduction of time spent in corners, an increased time spent in the center and a decreased time spent in freezing state. The results
obtained in the open field test showed that *Moringa oleifera* administration significantly increased rearing, assisted rearing, and number of squares traversed, which supports the anxiolytic-like activity of *Moringa oleifera*. The anxiolytic activity of some agents have been assessed by using the hole-board test. A significant increase in the exploratory head-dipping behavior was observed after treatment with 5 and 10mg/kg of *Moringa oleifera* extract, thus reinforcing the hypothesis that it has anxiolytic-like activity. These results confirm the anxiolytic effects of *Moringa oleifera*. They are to be compared with the work of Nsour, who in a similar study showed the anxiolytic effect of *Rauvolfia Serpenentina* from Aidee, who highlighted the anxiolytic effects of the ethanolic extracts of *Argemone mexicana*; from Carla, et al who demonstrated anxiolytic properties of aqueous extracts of *Salvia miltiorrhiza* in rats; Charles and Carnevale, who showed anxiolytic properties of extracts of *Maerna angolensis* in mice and *Griffonia simplicifolia* in rat. The anxiolytic effect of the hydro ethanolic leaves from *Moringa oleifera* could be due to the presence of alkaloids among the compounds of *Moringa oleifera*. Indeed, Aidee demonstrated that the alkaloids isolated from *Argemone mexicana* extracts increased the percentage of time spent in the open arms of rat EPM, in the same way as diazepam and *Argemone mexicana* extracts.

CONCLUSION

In conclusion, the results obtained in our study suggest that the extract of the leaves of *Moringa oleifera* possesses anxiolytic activity, which is possibly mediated through the GABA A –BZD mechanism. Thus, *Moringa oleifera* has potential clinical application in the management of anxiety disorders. Further investigation of the mechanism(s) of action of the plant extract, as well as the active substance(s) responsible for its biological actions, is necessary.

REFERENCES

