Research Artícle

World Journal of Pharmaceutical and Life Sciences <u>WJPLS</u>

www.wjpls.org

SJIF Impact Factor: 6.129

THE POLLEN VIABILITY OF THE ORIGINAL SPECIESAND INTERSPECIFIC HYBRIDS OF COTTON

Mutalova Mamura Karimjanovna*

Scientific Researcher, Institute of Genetics and Plant experimental Biology of the Academy of Sciences of the Republic of Uzbekistan, 111226, Yuqori yuz, Kibray district, Tashkent region, Uzbekistan.

Corresponding Author: Mamura Karimjanovna Mutalova Scientific Researcher, Institute of Genetics and Plant Experimental Biology, Academy of Sciences of the Republic of Uzbekistan 111226, Yuqori yuz, Kibray district, Tashkent region, Uzbekistan.

Article Received on 27/05/2020

Article Revised on 17/06/2020

Article Accepted on 07/07/2020

ABSTRACT

This article contains a cytological analysis of pollen grains in the Magnibracteolata Tod section and their hybrids, as well as plants F_1 , $C_1 - C_4$ The high viability of hybrids pollen makes it possible to use them in hybridization in solving theoretical and practical problems of breeding, for example, the transfer of the characteristics of wild species to cultivated varieties.

KEYWORDS: viability, pollen, fertility, species, subspecies, interspecific, hybrid, cotton.

1. INTRODUCTION

The success of hybridization is achieved by obtaining a viable offspring. Pollen viability analysis facilitates the creation of proper understanding of conditions that determine its normal existence, which is essential in establishing the timing of artificial pollination and of hybridization.

If during the development of pollen spontaneous or induced doubling of the number of chromosomes occurs, then completely homozygous fertile plants are formed - doubled haploids (digaploids). Under natural conditions, the frequency of androgenesis is extremely low and is described only in isolated cases.^[2,3,5,6]

Researchers present data on the dependence of pollen viability on the location of a flower on a bush, on sympodium, etc. The highest (90.1-93.3%) viability was observed in the flowers located in the first places (3-5 sympodial branches). In cotton, the first and second fruit branches are unproductive. The most productive are the fifth, sixth and seventh fruit branches.^[1]

2. MATERIALS AND METHODS

The study material are tetraploid species of cotton *Gossypium barbadense* L., *Gossypium hirsutum* L., *G.tomentosum, G. mustelinum, Gossypium hirsutum* var. *morili, G. barbadense* ssp. *ruderale* section *Magnibracteolata* Tod., as well as varieties AN-Bayaut-2, Bukhara-6 and their hybrids F1, induced polyploids C1-C4 (plants after colchicination) generations.

The analysis of pollen viability and tetrad analysis in the

studied species and hybrids was carried out according to the method of Z.M. Pausheva.^[4]

For analysis, pollen was taken from ten plants average and several flowers from the middle part of the bush along the main stem. And pollen viability analysis was determined by starch content.

3. RESULTS AND DISCUSSION

The results of the analysis of pollen viability in the initial species and hybrids turned out to be high. The highest viability was found in An-Bayaut-2 (99.2±1.8) (see. Table), the lowest among original species in G. mustelinum (92,0±2.1), G. tomentosum (96.2±1.9), G. hirsutum var. morili (95.0±0.8)%. In F1 hybrids, pollen viability is lower compared to the original species. The lowest pollen viability among F₁ hybrids was in combination G. hirsutum var. morili \times G. tomentosum and was (39.0 ± 1.6) %, high viability percentage was found in F1 AN-Bayaut-2 \times G. mustelinum (59.6±1.2). In C₂ generation pollen fertility in hybrids AN-Bayaut-2 \times G. tomentosum (79.5±1.6), G. hirsutum var. morili \times G. tomentosum (86.2 \pm 2,2), G. mustelinum \times G. tomentosum (89.0 \pm 1,8), AN-Bayaut-2 \times G. mustelinum (89.2±1.8)% is higher in comparison with F1 hybrids, but slightly lower in comparison with parent ones. This fact indicates that meiosis was stabilized on the basis of a harmonious combination of their chromosomes.

Nº	Variations	Number of analyzed pollen grains (pcs.)	pollen grains fertility (%) x±m	Variation coefficient (V %)
1	AN-Bayaut-2	1306	99.2 ± 1.8	1,2
2	G. tomentosum	1248	96.2 ± 1.9	1,2
3	G. mustelinum	1542	92.0 ± 0.7	2.1
4	G. hirsutum L. var morili	1364	95.0 ± 0.8	1,2
5	F_1 AN-Bayaut-2 × G.tomentosum	1724	59.4 ± 1.1	11.2
6	$F_{1}G$. hirsutum var. morili × G . tomentosum	1625	39.0 ± 1.6	12.3
7	$F_{1}G.$ mustelinum $\times G.$ tomentosum	1248	50.2 ± 1.2	12.6
8	F_1AN -Bayaut-2 × G. mustelinum	1625	59.6 ± 1.3	12,2
9	C_2 AN-Bayaut-2 × G. tomentosum	1348	79.5 ± 1.6	12.6
10	C_2G . hirsutum var. morili × G . tomentosum	1520	86.2 ± 2.2	9.6
11	$C_2 G$. mustelinum × G . tomentosum	1426	89.0 ± 1.8	12,2
12	C_2AN -Bayaut 2 × G . mustelinum	1124	88.2 ± 1.4	12,4
13	C_4G . mustelinum × G . tomentosum	910	89.2 ± 1.8	1,2
14	C_4 AN-Bayaut-2 × G. tomentosum	802	88.0 ± 0.7	2.1
15	C ₄ G. tomentosum × AN-Bayaut-2	889	89.0 ± 0.8	1,2
16	C_4G . tomentosum. × G. mustelinum	900	91.1 ± 1.1	1,2

Table: Pollen fertility of the original parent species, interspecific hybrids F1 and C2 -C4.

In combination C₂ *G. hirsutum* (AN-Bayaut- $2 \times G$. *tomentosum*) viability was the smallest (79.5±1.6) % apparently due to disharmonious structure of karyotype.

The highest rate of pollen fertility in C₂ generations was found in combination *G. mustelinum* × *G. tomentosum* and amounted to (89.0±1.8) %. In hybrid generations of C3 and C4 plants pollen was observed to be highly viable. In combination C₄ *G. tomentosum* × *G. mustelinum* pollen viability was (91.1± 1.1) %, since meiosis stabilized in these generations due to a harmonious karyotype.

The reasons for the fertility and sterility of octoploids can also be explained by the following:

- If, in hybridization and obtaining of F_1 plants, species are involved in which homeologous chromosomes with similar morphology when elevated to the octaploid level (8n = 104), the number of identical chromosomes increases and this leads to clumping of chromosomes, the formation of various chromosomal abnormalities (polyvalents tri-, tetra-, penta, hexavalents). This leads to disruption of the process of microsporogenesis and a decrease in fertility.
- In case of hybridization, the chromosomes in the initial species are not similar to each other, in this

case it is more difficult to obtain F_1 and there are more violations of the microsporogenesis process, so homeologous chromosomes in this case conjugate more difficultly or do not conjugate at all, this leads to a decrease in fertility in F_1 plants.

 when elevated (after colchicination) to octaploid level each chromosome creates a homologous pair and normal conjugation process restores. This leads to the normalization of meiosis, the formation of normal tetrads, increased fertility of hybrid plants.

4. CONCLUSIONS

It was established that meiosis in F1 also proceeds normally, the pollen performance rate is high, and a slight violation of meiosis does not affect the development of normal pollen in the hybrids we study.

It was determined that after the return of octaploids (8n = 104) again to the tetraploid level of ploidy (4n = 52), disturbances in incongruent crosses (such as *G. hirsutum* \times *G. tomentosum*, *G. mustelinum* \times *G. tomentosum*, *G. barbadense* \times *G. tomentosum*) there is less disturbance in microsporogenesis, and their pollen viability is higher than that of the congruent crossing pairs G. hirsutum \times *G. barbadense* ssp. *vitifolium* var. *brasilense*, *G. hirsutum* \times *G. mustelinum* and others.

It was found that according to the results of the analysis, the pollen viability in the initial species and their hybrids was high.

It was determined that in the combination C_2 *G. hirsutum* (An-Bayaut-2 × *G. mustelinum*), the viability was the least, apparently due to the disharmonious structure of its karyotype.

REFERENCES

- 1. Duleva D.I. Flowering biology and dynamics of fruit formation of cotton varieties *G. hirsutum* L. Abstract of diss. cand. of. biol. sciences, Astrakhan, 2008.
- Koul A.K., Karihaloo J.L. *In vivo* embryoids from anthers of *Narcissus* bioflorus Curt. Euphytica. 1977; 26: 97-102.
- 3. Orlov P.A. Nuclear and cytoplasmic control of pollen fertility. Abstract of diss. cand. of. biol. sciences, Minsk, 1985.
- 4. Pausheva Z.N. Plant cytology workshop. Moscow: Kolos, 1974; 213-287.
- 5. Rammana M.S. The origin and *in vivo* developmentt of embryoids in the anthers of *Solanum* hybrids. Euphtytica, 1974; 23: 623–632.
- 6. Rammana M.S., Hermsen J.G.T.H. Embryoid formation in the anthers of some interspecific hybrids in *Solanum*. Euphytica, 1974; 23: 423-427.