GENETIC DIVERSITY OF DJELLI ZEBU OF NIGER USING MICROSATELLITE DNA MARKERS

Zakari Idde Yahaya1*, Guiguigbaza-Kossigan Dayo2,3, Mani Maman2, Maurice Konkombo4, Souleymane Sylla4, Moumouni ISSA2 and Hamani Marichatou1

1Université Abdou Moumouni de Niamey, Faculté d’Agronomie, BP 10960, Niamey, Niger.
2Université Abdou Moumouni de Niamey, Faculté des Sciences et Techniques, BP 10960, Niamey, Niger.
3Institut National de Recherche Agronomique du Niger (INRAN,) BP 429, Niamey, Niger.
4Centre International de Recherche- Développement sur l’Elevage en zone Subhumide (CIRDES), BP 454 Bobo-Dioulasso, Burkina Faso.
5Institut du Sahel (INSAH/CILSS), B.P. 1530 Bamako.

*Corresponding Author: Zakari Idde Yahaya
Université Abdou Moumouni de Niamey, Faculté d’Agronomie, BP 10960, Niamey, Niger.

ABSTRACT
The present study was carried out to evaluate the genetic diversity in of the Djelli zebu of Niger sampled in three departments (Kollo, Say, Tera) of the Tillaberi region and in the peri-urban area of Niamey. A total of 20 microsatellite markers were used to genotype 114 animals. The results showed a high variability in the subpopulations studies. The number of alleles ranged from 5 (BM1824 and HAUT27) to 12 alleles (MM12) and while the allelic richness calculated using the rarefaction correction varied from 0.427 (SPS115) to 0.802 (HEL9).
The highest genetic diversity was observed in the department of Kollo and the lowest in the subpopulation of Niamey. The highest genetic distance values were observed between the Say and Niamey subpopulations while the lowest were between Kollo and Tera. The Bayesian clustering method showed that the most consistent gain in information was obtained with K = 2 and from K = 3 to K = 6, some individuals displayed less than 1% of their genome in other clusters.

KEYWORDS: zebu Djelli, diversity genetic, microsatellite markers, Niger.

INTRODUCTION
Livestock sector is an important asset for economic growth, food safety and poverty reduction in Niger as it provides income and numerous services for households. Livestock is mainly dominated by cattle particularly zebus or indicine cattle with a cervicothoracic hump (Bos indicus). According to the statistics (Niger, 2014), the country has about 37,835,272 heads of animals with 11 377 313 heads of cattle representing about 30% of the livestock. Djelli zebu is one of the five cattle breeds of this country. Its breeding is very popular because of its zootecchnical skills. Comparatively to the other zebu breeds of Niger (Azawak, Bororo and Gudali zebus), Djelli zebu is less known.

A recent study on phenotypic characteristics of Djelli zebu (Zakari et al., 2019) showed that most of the characteristics of the Fulani zebu of Niger were influenced by the factor “breeding locality” and the “sex” of the animal. Djelli breed is characterized by a straight profile of the head, variable horn shapes but mostly cup-shape and crescent-shape and lyre-shape. The coat pattern of body hair of Djelli zebu is mostly spotted and the color is either red-pied or black-pied.

The sustainable management of this zebu breed of Niger requires other knowledge on the genetic diversity using molecular markers studies in order to complete the information generated by morphobiometric characterization (Zakari et al. 2019). Thus, the present study was carried out to evaluate the genetic diversity in of the Djelli zebu of Niger sampled in three departments (Kollo, Say, Tera) of the Tillaberi region and in the peri-urban area of Niamey.

MATERIALS AND METHODS
Study area and animal material
The study was conducted in three departments of Tillabery region (Kollo, Say and Téra) and the peri-urban zone of Niamey, located along the Niger River which is the natural extension area of Djelli zebu in Niger. The study area is shown in Figure 1.
Animal sampling and genotyping method
The genotyping data were collected from the blood samples of 114 individuals belonging to the Fulani zebu (Djelli) race from Niger from the study area mentioned above. The numbers of animals sampled for each department were: Kollo (64), Say (29), Téra (13) and the peri-urban area of Niamey (8). The blood samples were taken from the jugular vein of the animals in EDTA vacutainer tubes and then stored on ice before they were transferred to the laboratory for DNA extraction.

Genomic DNA was extracted from whole blood samples using the Promega Wizard Kit and stored at -20°C until genotyping.

Twenty-two microsatellite markers were genotyped among which 21 were chosen in the Food and Agriculture Organization panel recommended for livestock biodiversity studies and one (BM4440) was detected as under selection and is located within the confidence interval of a previously described QTL underlying a trypanotolerance-related trait (Dayo et al., 2009; Hanotte et al., 2003) (table 1).

The forward primer for each locus was labelled with one of the four fluorescent dyes FAM, VIC, NED and PET (Applied Biosystems, USA). Multiplexed Polymerase chain reaction was performed in a total reaction volume of 12 µl containing 5 µl of mix primers of multiplex, 5 µl of mix of other reagents (Buffer, MgCl₂, Taq polymerase) and 2 µl of DNA. The following thermal conditions, 94°C for 15 minutes, followed by 30 cycles of 94°C for 30 seconds, specific annealing temperature (58°C and 60°C according to the multiplex) for 1 minute 30 seconds and 72°C for 1 minute 30 seconds and a final extension at 72°C for 15 minutes was used for sample amplification by PCR. DNA fragments analysis of microsatellite markers was carried out using Applied Biosystems 3500 automated DNA sequencer along with LIZ600 (Applied Biosystems, USA) as an internal lane control. The allele size data for each sample was extracted using Genemapper software, version 5.
Table 1: Characteristics of the microsatellite markers used.

<table>
<thead>
<tr>
<th>Markers</th>
<th>SEQUENCE (5′ - 3′)</th>
<th>Dye</th>
<th>Expected size</th>
<th>Annaling Temperature (°C)</th>
<th>Multiplex</th>
</tr>
</thead>
<tbody>
<tr>
<td>CSRM60F</td>
<td>AAGATGTGATCCAAAGAGAGAGCA</td>
<td>6-FAM</td>
<td>(79 - 115)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>CSRM60R</td>
<td>AGGGACGATGCTGAAAGAGCATG</td>
<td>6-FAM</td>
<td>(79 - 115)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HEL9F</td>
<td>CACATTGCTTCCAGGT</td>
<td>6-FAM</td>
<td>(141 - 173)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HEL9R</td>
<td>CATCTTGTTCCTCAACC</td>
<td>6-FAM</td>
<td>(141 - 173)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>HEL1F</td>
<td>CACACGTATTTAACAAGGA</td>
<td>NED</td>
<td>(99 - 119)</td>
<td>60</td>
<td>1</td>
</tr>
<tr>
<td>HEL1R</td>
<td>AGCTTACAGCTCAGGGATT</td>
<td>PET</td>
<td>(99 - 119)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>INRA63F</td>
<td>ATTTGCAAAAACTAATCTAACC</td>
<td>NED</td>
<td>(167 - 189)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>INRA63R</td>
<td>AAACACAGAAAAATGCTTGAAG</td>
<td>VIC</td>
<td>(167 - 189)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>INRA 023F</td>
<td>GAGTAGAGCTCAAGATAAACTTC</td>
<td>VIC</td>
<td>(195 - 225)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>INRA 023R</td>
<td>TAATCAAGGTGGTTAGTGAACCTC</td>
<td>VIC</td>
<td>(195 - 225)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BM4440F</td>
<td>CCCTGGCAATCAGAGAACGTT</td>
<td>PET</td>
<td>(100-121)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BM4440R</td>
<td>TAGATGAAAAACACACACACA</td>
<td>PET</td>
<td>(100-121)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BM1824F</td>
<td>GAGCAAGGTGTCTTTCCAATC</td>
<td>PET</td>
<td>(176 - 197)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BM1824R</td>
<td>CATCTCCAAAGCTTCCTCTTG</td>
<td>PET</td>
<td>(176 - 197)</td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>BM1818F</td>
<td>AGCTTGGGAAAAATCAGGAAGG</td>
<td>NED</td>
<td>(248 - 278)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>BM1818R</td>
<td>AGTGCTTTCAAAGGTCCATGC</td>
<td>PET</td>
<td>(248 - 278)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MM12F</td>
<td>CAAGAGTTGTTTCTCAATCT</td>
<td>VIC</td>
<td>(99 - 145)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>MM12R</td>
<td>ATCGACCTCAGGGGTAGGTG</td>
<td>VIC</td>
<td>(99 - 145)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HAUT27F</td>
<td>AACTGCTAAATCCTACCTTTA</td>
<td>NED</td>
<td>(120 -158)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HAUT27R</td>
<td>TTTTATGTCATATTTTGACTG</td>
<td>VIC</td>
<td>(120 -158)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ILST005F</td>
<td>GGAAGCAATATCTATAGGCC</td>
<td>VIC</td>
<td>(176 - 194)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ILST005R</td>
<td>TGTCTCTGTGAAGTTCTCAG</td>
<td>VIC</td>
<td>(176 - 194)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TGLA122F</td>
<td>GCCCTCCTCAGGTAATCTAGC</td>
<td>PET</td>
<td>(136 - 184)</td>
<td>57</td>
<td>2</td>
</tr>
<tr>
<td>TGLA122R</td>
<td>AATCAGATTGCAATAATGACATAC</td>
<td>PET</td>
<td>(136 - 184)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>INRA035F</td>
<td>TTGTGTCTTATGACACTATCCG</td>
<td>PET</td>
<td>(100 - 124)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>INRA035R</td>
<td>ATCCCTCTGAGCTCCACATTG</td>
<td>PET</td>
<td>(100 - 124)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HEL5F</td>
<td>GCAGGATCCTTGGTTGGAAGGA</td>
<td>6-FAM</td>
<td>(145 - 171)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>HEL5R</td>
<td>AGACGTTAGTTGTACATTAAC</td>
<td>6-FAM</td>
<td>(145 - 171)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ETH10F</td>
<td>GTTCAGAGCTGCCCCTGCTAAC</td>
<td>6-FAM</td>
<td>(207 - 231)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>ETH10R</td>
<td>CCTCAAGCCCCTTCTCTCAG</td>
<td>6-FAM</td>
<td>(207 - 231)</td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>TGLA53F</td>
<td>GCTTCTGCAAAATAGTGGTGATTCA</td>
<td>NED</td>
<td>(143 - 191)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TGLA53R</td>
<td>ATCTTACATGATAATTACAGCA</td>
<td>NED</td>
<td>(143 - 191)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ETH112F</td>
<td>TACCTCTGAGGGCGAGCTCTG</td>
<td>VIC</td>
<td>(181 - 211)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>ETH112R</td>
<td>GAGACCTCGGTTGTTGATCAG</td>
<td>VIC</td>
<td>(181 - 211)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BM2113F</td>
<td>GCTGACCTCTTCTTACAAATACC</td>
<td>PET</td>
<td>(122 - 156)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>BM2113R</td>
<td>CTTCTTGAGAAGAGCAACACC</td>
<td>PET</td>
<td>(122 - 156)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>INRA005R</td>
<td>CAATCTGACATGATAATAATAT</td>
<td>6-FAM</td>
<td>(135 - 149)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>INRA005F</td>
<td>CTCTAGGCCATACCCTACAACC</td>
<td>6-FAM</td>
<td>(135 - 149)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CSSM66F</td>
<td>ACACAATCCCTGCGAGCTGTA</td>
<td>6-FAM</td>
<td>(171-209)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>CSSM66R</td>
<td>AATTGATACTGAGGAGCGTCTG</td>
<td>6-FAM</td>
<td>(171-209)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SPS115F</td>
<td>AAAGTGACACAACAGCTTCCTCCAG</td>
<td>NED</td>
<td>(234 - 258)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>SPS115R</td>
<td>AAGCTGTTCTCAGTTTGGGCTTG</td>
<td>NED</td>
<td>(234 - 258)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TGLA227F</td>
<td>CGAATCTTCATCTGTTTAATTTGCT</td>
<td>VIC</td>
<td>(75 - 105)</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TGLA227R</td>
<td>ACAGACAGAAAATGCTGAAAGCA</td>
<td>VIC</td>
<td>(75 - 105)</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Data analysis

Allele numbers, allelic richness, the unbiased estimator of Wright’s inbreeding coefficient F_{IS} was calculated according to Weir et Cockerham (1984) for each locus using FSTAT software version 2.9.4 (Goudet, 2003).

Additionally, observed and unbiased expected heterozygosities per locus (Nei, 1987), genetic distances (Nei, 1978) were estimated using GENETIX 4.03 (http://www.genetix.univ-montp2.fr) as well as the Factorial Correspondence Analysis.

Departs from Hardy–Weinberg equilibrium over all loci were evaluated using Fisher’s method implemented in Genepop v. 4.7.2 (Rousset, 2007). The same software was used to perform the score test for Hardy–Weinberg
equilibrium (Rousset and Raymond, 1995) per locus using a Markov chain algorithm with 10,000 dememorizations, 200 batches and 5000 iterations per batch.

The Hardy-Weinberg equilibrium test measures the difference between the observed numbers of population genotypes and the theoretical genotypic numbers obtained with the Hardy-Weinberg relationship.

The detection of null alleles, the excess of homozygotes at this locus, the detection of short alleles (large allele dropout or short allele dominance), cases of stuttering were estimated using the software Microchecker (Van Oosterhout et al. 2004).

The effective number of alleles (Ae) and the polymorphic information content (PIC) for each locus were analyzed by using Molkin v. 3.0 software (Gutierrez et al., 2005).

To assign individuals to K populations and estimate the posterior distribution of each individual’s admixture coefficient, we used STRUCTURE software 2.3.4 (Pritchard et al., 2000) in which a model-based Bayesian clustering analysis is implemented. Because genotyping information for the putative parental populations was not available, we hypothesized k parental unknown populations (k varying from 1 to 8 with 10 replicated runs for each K). Analysis was performed with a burn in length of 50,000 followed by 100,000 Markov chain Monte Carlo iterations for each of K using independent allele frequencies between the parental populations and an no admixture model.

The optimal ‘K’ was identified based on ∆K, the second order rate of change in LnP(D) following the likelihood procedure of Evanno et al. (2005) using Structure Harvester (available at http://taylor0.biology.ucla.edu/structureHarvester/). Structure Harvester is a web-based program for collating results generated by the STRUCTURE program to identify the best value of K. The program provides a fast way to assess and visualize likelihood values across multiple values of K and to detection of the number of genetic groups that best fit the data.

RESULTS

Genetic diversity

Of the 22 microsatellite markers used, two (INRA063 and INRA005) presented an amplification problem and were eliminated from the analysis. Indeed, either no individual could be genotyped with these markers in at least one population or else they had a high rate of genotyping failure in populations generating a lot of missing data). In addition, three pairs of loci showed a linkage imbalance (p <0.05): BM4440 X HEL1, MM12 X TGLA53 and BM2113 X TGLA53. HEL1 and TGLA53 were then removed for further analysis.

Table 2: Number of alleles (Na), allelic richness (RA), expected (He) and observed (Ho) heterozygosities per loci in subpopulations of Djelli zebu.

<table>
<thead>
<tr>
<th>Loci</th>
<th>Kollo</th>
<th>Say</th>
<th>Tera</th>
<th>Niamey</th>
<th>Overall sampling locations (department)</th>
<th>Mean ± SD</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1824</td>
<td>Na</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>5</td>
<td>4.25 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>3.5</td>
<td>4.5</td>
<td>3.7</td>
<td>3.8</td>
<td>3.88 ± 0.45</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.72</td>
<td>0.80</td>
<td>0.74</td>
<td></td>
<td>0.75 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.81</td>
<td>0.80</td>
<td>0.43</td>
<td></td>
<td>0.72 ± 0.2</td>
</tr>
<tr>
<td>BM4440</td>
<td>Na</td>
<td>8</td>
<td>5</td>
<td>10</td>
<td></td>
<td>6.5 ± 1.73</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>4.6</td>
<td>4.5</td>
<td>4.2</td>
<td>4.7</td>
<td>4.52 ± 0.22</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.77</td>
<td>0.81</td>
<td>0.78</td>
<td></td>
<td>0.79 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.76</td>
<td>0.92</td>
<td>0.88</td>
<td></td>
<td>0.83 ± 0.08</td>
</tr>
<tr>
<td>CSRM60</td>
<td>Na</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>10</td>
<td>6.75 ± 1.89</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>4.2</td>
<td>4.7</td>
<td>3.2</td>
<td>4.2</td>
<td>4.03 ± 0.6</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.65</td>
<td>0.70</td>
<td>0.58</td>
<td></td>
<td>0.63 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.58</td>
<td>0.85</td>
<td>0.75</td>
<td></td>
<td>0.69 ± 0.13</td>
</tr>
<tr>
<td>HEL9</td>
<td>Na</td>
<td>9</td>
<td>7</td>
<td>5</td>
<td>10</td>
<td>7.25 ± 1.71</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>5.5</td>
<td>5.4</td>
<td>4.4</td>
<td>5.3</td>
<td>5.09 ± 0.5</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.85</td>
<td>0.84</td>
<td>0.76</td>
<td></td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.78</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
<td>0.86 ± 0.18</td>
</tr>
<tr>
<td>INRA023</td>
<td>Na</td>
<td>7</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>4.5 ± 1.91</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>4.0</td>
<td>3.0</td>
<td>2.8</td>
<td>3.4</td>
<td>3.27 ± 0.51</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.69</td>
<td>0.64</td>
<td>0.59</td>
<td></td>
<td>0.63 ± 0.05</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.50</td>
<td>0.80</td>
<td>0.50</td>
<td></td>
<td>0.58 ± 0.15</td>
</tr>
<tr>
<td>BM1818</td>
<td>Na</td>
<td>9</td>
<td>6</td>
<td>6</td>
<td>9</td>
<td>7.00 ± 1.41</td>
</tr>
<tr>
<td></td>
<td>RA</td>
<td>5.1</td>
<td>4.6</td>
<td>5.1</td>
<td>5.1</td>
<td>4.96 ± 0.26</td>
</tr>
<tr>
<td></td>
<td>He</td>
<td>0.81</td>
<td>0.78</td>
<td>0.82</td>
<td></td>
<td>0.81 ± 0.02</td>
</tr>
<tr>
<td></td>
<td>Ho</td>
<td>0.82</td>
<td>0.77</td>
<td>0.88</td>
<td></td>
<td>0.82 ± 0.04</td>
</tr>
<tr>
<td>Locus</td>
<td>Na</td>
<td>RA</td>
<td>He</td>
<td>Ho</td>
<td>Mean He ± SD</td>
<td>Mean RA ± SD</td>
</tr>
<tr>
<td>--------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>--------------</td>
<td>--------------</td>
</tr>
<tr>
<td>ETH10</td>
<td>6.75 ± 1.71</td>
<td>4.41 ± 0.4</td>
<td>0.74 ± 0.08</td>
<td>0.78 ± 0.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGLA22</td>
<td>5.3 ± 1.5</td>
<td>3.5 ± 0.5</td>
<td>3.27 ± 0.37</td>
<td>0.69 ± 0.05</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPS115</td>
<td>8.2 ± 2.3</td>
<td>4.3 ± 1.5</td>
<td>3.7 ± 1.1</td>
<td>4.1 ± 0.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGLA227</td>
<td>6.38 ± 0.21</td>
<td>4.63 ± 0.21</td>
<td>5.32 ± 0.21</td>
<td>4.1 ± 0.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Information on the number of alleles/locus and number of alleles/locus/population, expected heterozygosities (He) and observed heterozygosities (Ho) are summarized in Table 2. All loci used were polymorphic with a large number of alleles per locus (Na), ranging from 5 (BM1824 and HAUT27) to 12 alleles (MM12) while the allelic richness ranged from 0.427 (SPS115) to 0.802 (HEL9) and the same trend was observed for the effective allele number (from 1.81 for SPS115 to 5.66 for HEL9). The highest genetic diversity was observed in the Department of Kollo has the highest values of the genetic diversity parameters (He, PIC, Ae and k) while the lowest values were obtained in the subpopulation of Niamey (table 3).

The highest genetic diversity (Table 3) was observed in the Department of Kollo, while the lowest values were obtained in the subpopulation of Niamey. Within the subpopulation, the mean Ho varied from 0.62 (Kollo department) to 0.71 (Tera department), while the mean He varied from 0.64 (Niamey department) to 0.70 (Kollo, Say and Tera departments).

Table 3: Average values of Polymorphic Information Content (PIC), effective number of Allele (Ae), average number of allele per locus (k) and the average number of allele per locus using the rarefaction method (K (10)) using molkin 3.0.

<table>
<thead>
<tr>
<th>Subpopulations</th>
<th>Ho</th>
<th>He</th>
<th>PIC</th>
<th>Ae</th>
<th>K</th>
<th>K (10)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kollo</td>
<td>0.626</td>
<td>0.684</td>
<td>0.5405</td>
<td>3.64</td>
<td>7.22</td>
<td>4.17</td>
</tr>
<tr>
<td>Say</td>
<td>0.681</td>
<td>0.682</td>
<td>0.5254</td>
<td>3.59</td>
<td>6.28</td>
<td>4.18</td>
</tr>
<tr>
<td>Tera</td>
<td>0.698</td>
<td>0.664</td>
<td>0.5119</td>
<td>3.37</td>
<td>5.28</td>
<td>4.07</td>
</tr>
<tr>
<td>Niamey</td>
<td>0.663</td>
<td>0.593</td>
<td>0.4444</td>
<td>2.88</td>
<td>4.33</td>
<td>3.74</td>
</tr>
<tr>
<td>Total</td>
<td>0.658</td>
<td>0.688</td>
<td>0.6538</td>
<td>3.68</td>
<td>8.17</td>
<td>4.15</td>
</tr>
</tbody>
</table>

Exact tests of deviation from Hardy–Weinberg expectations (HWE) showed a significant deviation from HWE (P < 0.01) of some markers in Kollo and Say subpopulations, suggesting that null alleles might be segregating in these populations (Table 4).

Table 4: FIS per locus and per subpopulation.

<table>
<thead>
<tr>
<th>Loci</th>
<th>Kollo</th>
<th>Say</th>
<th>Tera</th>
<th>Niamey</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1824</td>
<td>-0.128</td>
<td>-0.186</td>
<td>0.000</td>
<td>0.438</td>
</tr>
<tr>
<td>BM4440</td>
<td>0.016</td>
<td>0.025</td>
<td>-0.142</td>
<td>-0.126</td>
</tr>
<tr>
<td>CSRM60</td>
<td>0.113*</td>
<td>0.026</td>
<td>-0.222</td>
<td>-0.333</td>
</tr>
<tr>
<td>HEL9</td>
<td>0.082</td>
<td>0.226*</td>
<td>-0.210</td>
<td>-0.355</td>
</tr>
<tr>
<td>INRA023</td>
<td>0.286</td>
<td>0.165</td>
<td>-0.280</td>
<td>0.167</td>
</tr>
<tr>
<td>BM1818</td>
<td>-0.013</td>
<td>0.017</td>
<td>0.016</td>
<td>-0.077</td>
</tr>
<tr>
<td>ETH10</td>
<td>-0.083</td>
<td>0.161</td>
<td>-0.091</td>
<td>-0.225</td>
</tr>
<tr>
<td>HAUT27</td>
<td>0.302*</td>
<td>0.042</td>
<td>-0.078</td>
<td>-0.538</td>
</tr>
<tr>
<td>HEL5</td>
<td>0.480**</td>
<td>0.473***</td>
<td>0.573</td>
<td>0.407</td>
</tr>
<tr>
<td>ILST005</td>
<td>-0.008</td>
<td>0.053</td>
<td>0.036</td>
<td>0.138</td>
</tr>
<tr>
<td>INRA35</td>
<td>0.187</td>
<td>-0.011</td>
<td>0.330</td>
<td>0.000</td>
</tr>
<tr>
<td>MM12</td>
<td>0.222*</td>
<td>-0.015</td>
<td>-0.065</td>
<td>-0.167</td>
</tr>
<tr>
<td>TGLA122</td>
<td>0.090</td>
<td>-0.006</td>
<td>0.111</td>
<td>-0.287</td>
</tr>
<tr>
<td>BM2113</td>
<td>0.083</td>
<td>-0.145</td>
<td>0.063</td>
<td>0.400</td>
</tr>
<tr>
<td>CSSM66</td>
<td>0.219*</td>
<td>-0.085</td>
<td>-0.123</td>
<td>0.155</td>
</tr>
<tr>
<td>ETH152</td>
<td>-0.048</td>
<td>-0.076</td>
<td>0.178</td>
<td>0.415</td>
</tr>
<tr>
<td>SPS115</td>
<td>0.041*</td>
<td>-0.004</td>
<td>-0.079</td>
<td>-0.171</td>
</tr>
<tr>
<td>TGLA22</td>
<td>0.333**</td>
<td>0.000</td>
<td>-0.145</td>
<td>-0.053</td>
</tr>
<tr>
<td>Over all loci</td>
<td>0.113*</td>
<td>0.037</td>
<td>-0.016</td>
<td>-0.016</td>
</tr>
</tbody>
</table>

*** p<0.001, **p<0.05

The overall value for F-statistics FIS, FXT and FIS in the studied population of Djelli zebu were 0.068, 0.004 and 0.064 respectively (table 5).
Table 5: Polymorphic Information Content (PIC), effective number of Allele (Ae), F-Statistics (F_{IS}, F_{IR} and F_{ST}) according Weir and Cockerham (1984) per locus in the Djelli population studied.

<table>
<thead>
<tr>
<th>Locus</th>
<th>PIC</th>
<th>Ae</th>
<th>F_{IR}</th>
<th>F_{ST}</th>
<th>F_{IS}</th>
</tr>
</thead>
<tbody>
<tr>
<td>BM1824</td>
<td>0.675</td>
<td>3.61</td>
<td>-0.084</td>
<td>-0.008</td>
<td>-0.075</td>
</tr>
<tr>
<td>BM4440</td>
<td>0.754</td>
<td>4.66</td>
<td>-0.009</td>
<td>0.010</td>
<td>-0.019</td>
</tr>
<tr>
<td>CSRM60</td>
<td>0.612</td>
<td>2.72</td>
<td>-0.006</td>
<td>-0.004</td>
<td>-0.003</td>
</tr>
<tr>
<td>HEL9</td>
<td>0.802</td>
<td>5.66</td>
<td>0.054</td>
<td>0.002</td>
<td>0.056</td>
</tr>
<tr>
<td>INRA023</td>
<td>0.571</td>
<td>2.76</td>
<td>0.168</td>
<td>0.000</td>
<td>0.168</td>
</tr>
<tr>
<td>BM1818</td>
<td>0.779</td>
<td>5.1</td>
<td>-0.007</td>
<td>-0.003</td>
<td>-0.005</td>
</tr>
<tr>
<td>ETH10</td>
<td>0.740</td>
<td>4.37</td>
<td>0.000</td>
<td>0.015</td>
<td>-0.015</td>
</tr>
<tr>
<td>HAUT27</td>
<td>0.611</td>
<td>3.08</td>
<td>0.094</td>
<td>0.002</td>
<td>0.093</td>
</tr>
<tr>
<td>HEL5</td>
<td>0.509</td>
<td>2.18</td>
<td>0.483</td>
<td>0.003</td>
<td>0.482</td>
</tr>
<tr>
<td>ILST005</td>
<td>0.703</td>
<td>3.93</td>
<td>0.043</td>
<td>0.014</td>
<td>0.029</td>
</tr>
<tr>
<td>INRA35</td>
<td>0.439</td>
<td>1.9</td>
<td>0.181</td>
<td>0.024</td>
<td>0.162</td>
</tr>
<tr>
<td>MM12</td>
<td>0.728</td>
<td>5.08</td>
<td>0.063</td>
<td>-0.006</td>
<td>0.069</td>
</tr>
<tr>
<td>TGLA122</td>
<td>0.703</td>
<td>3.64</td>
<td>0.030</td>
<td>0.006</td>
<td>0.024</td>
</tr>
<tr>
<td>BM2113</td>
<td>0.771</td>
<td>4.95</td>
<td>0.054</td>
<td>-0.000</td>
<td>0.054</td>
</tr>
<tr>
<td>CSSM66</td>
<td>0.798</td>
<td>5.61</td>
<td>0.104</td>
<td>0.017</td>
<td>0.088</td>
</tr>
<tr>
<td>ETH152</td>
<td>0.453</td>
<td>1.98</td>
<td>0.007</td>
<td>-0.021</td>
<td>0.027</td>
</tr>
<tr>
<td>SPS1115</td>
<td>0.427</td>
<td>1.81</td>
<td>-0.003</td>
<td>0.002</td>
<td>-0.005</td>
</tr>
<tr>
<td>TGLA227</td>
<td>0.639</td>
<td>3.11</td>
<td>0.170</td>
<td>0.028</td>
<td>0.146</td>
</tr>
<tr>
<td>All loci</td>
<td>0.654</td>
<td>3.68</td>
<td>0.068</td>
<td>0.004</td>
<td>0.064</td>
</tr>
</tbody>
</table>

Genetic structure of the population

Genetic distances and pairwise F_{ST} of subpopulation

The overall differentiation level of the subpopulations was very low ($F_{ST} = 0.004$). Among the four subpopulations, the highest values of genetic distance and F_{ST} were observed between Say and Niamey subpopulations while the lowest were between Kollo and Tera for F_{ST} and between Kollo and Say subpopulations for distance of Cavalli-Sforza & Edwards (Table 6).

Table 6: Pairwise F_{ST} (above of the matrix) and pairwise genetic distance of Cavalli-Sforza & Edwards (below of the matrix).

<table>
<thead>
<tr>
<th></th>
<th>Kollo</th>
<th>Say</th>
<th>Tera</th>
<th>Niamey</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kollo</td>
<td>0</td>
<td>0.0036</td>
<td>-0.0025</td>
<td>0.0132</td>
</tr>
<tr>
<td>Say</td>
<td>0.031</td>
<td>0</td>
<td>0.0028*</td>
<td>0.0192</td>
</tr>
<tr>
<td>Tera</td>
<td>0.044</td>
<td>0.057</td>
<td>0</td>
<td>0.0054</td>
</tr>
<tr>
<td>Niamey</td>
<td>0.072</td>
<td>0.079</td>
<td>0.069</td>
<td>0</td>
</tr>
</tbody>
</table>

Genetic structuring of populations by factorial analysis of correspondences

The clustering obtained by the factorial correspondence analysis (FCA 3D and FCA 2D) is shown in figure 2 (A and B). On the FCA 2D, there is no clear delimitation between the four subpopulations. Although the pairwise values of the F_{ST} were very low, the FCA 3D allowed to represent the different subpopulations. The factorial axis 1 (40.56%) separates all individuals of Niamey, Tera, a large part of Kollo and a small part of Say subpopulations in one side while the large part of Say and a small part of Kollo were clustered in the other side. The factorial axis 2 (32.91%) groups together Kollo, Tera and a small proportion of Say subpopulations in one hand and the Niamey and the large part of Say subpopulations.

Figure 2: Factorial correspondence analysis (A: 3D and B: 2D).

Genetic structuring of populations by the Bayesian inference method

The number of probable genetic groups from subpopulations (departments) determined by the Evanno method amounts to $K = 2$ (figure 3).
The results show that the value of k which better explains the structuring of the population of the djelli zebu is $k = 2$ (table 7, figure 18). With $k = 2$, individuals were predominantly grouped in group 1 with more than 80% (in the Kollo, Tera and Niamey subpopulations) and 75% in the department of Say while individuals in group 2 did not represent only 16% (Kollo sub-population) to 25% (Say sub-population) (table 8).

Table 8: Proportion of membership of each predefined population in 2 clusters ($K = 2$).

<table>
<thead>
<tr>
<th>Sous-populations</th>
<th>Clusters</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kollo</td>
<td></td>
<td>0.842</td>
<td>0.158</td>
</tr>
<tr>
<td>Say</td>
<td></td>
<td>0.748</td>
<td>0.252</td>
</tr>
<tr>
<td>Tera</td>
<td></td>
<td>0.829</td>
<td>0.171</td>
</tr>
<tr>
<td>Niamey</td>
<td></td>
<td>0.814</td>
<td>0.186</td>
</tr>
</tbody>
</table>

From $K=3$ to $K=6$, some individuals displayed less than 1% of their genome in other clusters. From $K=6$ to $K=8$, increasing in the prior number of clusters does not change significantly the genetic structure of Djelli population. Say department seemed to be the administrative department where introgression of Djelli zebu was the highest among the four subpopulations studied. Individuals from Tera and Niamey departments were the most homogenous and seemed to have the same origin as showed by the neighbour-joining tree obtained using Cavalli-Sforza & Edwards genetic distances (figure 5).
Figure 4: Population structure assessed by Structure. Each individual is represented by a vertical bar, often partitioned into coloured segments with the length of each segment representing the proportion of the individual’s genome from \(K = 2, 3, 4 \) and 5 ancestral populations. Subpopulations are separated by black lines.

Figure 5: Neighbour-joining tree obtained with Cavalli-Sforza & Edwards genetic distances

DISCUSSION

The results presented in this study are the first for in the Fulani zebu population of Niger named Djelli zebu. Similar studies were conducted in other cattle breeds of Niger: Kouri taurine breed (Grema et al. 2017) and Bororo zebu breed or Wodaabe from Niger (Maaouia et al. 2019). The four administrative departments included in this study were the most important breeding areas of the Djelli zebu in Niger. Our results can be considered as reflecting a good overview of the genetic diversity of the Djelli zebu in Niger.

Genetic diversity of Djelli zebu of Niger

A high genetic diversity was observed in the four subpopulations (departments) of Djelli zebus of Niger. Indeed, the set of 22 loci used in the study showed an average value of the Polymorphic Information Content (PIC) of 0.654. The similar mean value of PIC was reported in a characterization study of the Bororo zebu in Niger with 27 microsatellite markers (Maaouia et al. 2019) (0.65). High PIC average (0.75) have been reported in four cattle breeds (Zebu Gobra, Zebu Maure, Zebu Djakore and taurin N'dama) in Senegal (Ndiaye et al. 2015) and in Cameroon (Ngono Emo et al. 2014) for microsatellite loci. Botstein et al. (1980) recommended to consider microsatellite markers as informative when the PIC value is above 0.5. In a general way, the microsatellite loci used are sufficiently informative to describe the genetic diversity of the Djelli zebu population studied. The average number of alleles per locus and the heterozygosities obtained were higher than those previously reported by Freeman et al. (2004) in Fulani zebu from Burkina Faso, Goudali zebu from Sokoto and white Fulani zebu from Nigeria. However, the expected and observed heterozygosities, the average number of alleles per locus (\(Na = 8.2 \)) and the effective number of alleles (\(Ae = 3.68 \)) approximated those obtained by Traore et al. (2015) in the Fulani zebu in Burkina Faso. Furthermore, the average number of alleles per locus (\(Na \)) is higher than those reported in the Bororo zebu (Wodaabe) populations of Niger (\(Na = 5.22 \)) (Maaouia et al. 2019) and in the Kouri breed from Niger (\(Na = 6.74 \)) (Grema et al. 2017) and in zebu breed of Benin (\(Na = 7.9 \)) (Moazami-Goudarzi et al. 2001). However, this number remains lower than those observed in the cattle populations of Senegal (\(Na = 10.45 \)) (Ndiaye et al. 2015) and Cameroon (Ngono Emo et al. 2014. The high genetic diversity is a characteristic of West African zebu (\(Bos indicus \)) and crossbreeds (\(Bos indicus \times Bos taurus \)) compared to the West African taurine cattle and European cattle generally subject to selection and artificial insemination (\(Bos taurus \)) (Traore et al. 2014; Dayo et al. 2009, Freeman et al. 2004).

In our study, the expected heterozygosities was greater and close to that estimated in the cattle populations in Turkey and in the northern part of the Arabian Peninsula (Freeman et al. 2004), and in the mixed cattle populations of Cameroon and Nigeria (Ibeagha-Awemu et al. 2004).

The high genetic diversity of West African zebras and crossbreeds (\(Bos indicus \times Bos taurus \)) is linked to their history. Indeed, West African zebras contain a certain
proportion of taurine genes because there would have been a continuous introgression between zebras *B. indicus* and taurins *B. taurus* (MacHugh et al. 1997, Hanotte et al. 2002, Freeman et al. 2004). In the crossbreeds (*Bos indicus X Bos taurus*), stabilized (Borgou, Djakore) or not, the strong genetic diversity is explained by the effect of combining alleles of two genetic types of cattle (Dayo et al., 2009, Freeman et al., 2004) and by the combination of a relatively larger effective population size associated with a higher migration rate, linked to a transhumant breeding system.

A slight difference in panmixia (significant average *F*$_{IS}$) exists in Kollo subpopulation while for other subpopulations, although *F*$_{IS}$ is significantly high at some locus levels, it is not significant at the subpopulation level. The significant *F*$_{IS}$ may be due to technical problems (presence of null alleles on certain markers, dominance of short alleles), the presence of a few related individuals (inbreeding) or even a hidden structure in the population also called the Wahlund effect.

With regard to locus BM4440, it was shown in the population of the zebu Djelli a higher variability as reported by Dayo et al., (2009) in the zebu populations. Indeed, Dayo et al. (2009) compared the distribution of allelic frequencies of the BM4440 locus in the trypanotolerant West African Taurine populations and trypanosusceptible West-African zebras. The authors reported a loss of variability at this locus in West African Taurine marked by the reduction in the number of alleles to two and the almost fixation of the most frequent allele (allelic frequency greater than 0.95) except in Lagune taurine which have presented two almost equi-frequent alleles – (0.45 and 0.55).

Genetic structure of the population

Across all subpopulations, the overall value for *F*$_{ST}$ was 0.004. This value is lower than the 0.03 to 0.06 previously reported by Dayo et al. (2009) and Freeman et al. (2004) in the West African zebu populations. The level of differentiation (*F*$_{ST}$) between the Djelli zebu subpopulations is also lower than those obtained in other cattle populations of Niger as in Bororo zebu (Maououa et al. 2019) with a *F*$_{ST}$ of 0.036 and in the Kouri with a *F*$_{ST}$ value of 0.026 (Grema et al. 2017). It is important to note that the Kouri cattle is classified as taurine because having a *Bos taurus* submetacentric Y chromosome (Zafindrajaona et al. 1999) and being) humless, but all molecular studies up to now showed in the Kuri breed, genetic characteristics close to the crossbreeds *Bos taurus X Bos indicus* (Souvenir Zafindrajaona et al. 1999, Freeman et al. 2004, Dayo et al. 2009). The values of *F*$_{ST}$ obtained between the subpopulations of the Djelli zebu are also lower than those obtained in other cattle populations on the African continent, in particular on Ethiopian cattle breeds (*F*$_{ST}$ = 0.013, Dadi et al. 2008), between the Sudanese Fulani zebu subpopulations (*F*$_{ST}$ = 0.084, Hussein et al. 2015), between the Cameroonian indigenous zebras (*F*$_{ST}$ = 0.061, Ngono Ema et al. 2014).

Latch et al. (2006) reported that using factorial correspondence analysis (FCA) and a Bayesian approach for detecting population structure (STRUCTURE; Pritchard et al., 2000) performs well at low levels of population differentiation. Results from both Cavalli-Sforza & Edwards distance-based analysis and Bayesian analysis were concordant and tally well with the hypothesis that the administrative division into “department” has very little influence on the genetic structure of the Djelli zebu population in Niger. These results show that in the Tillabery region, the Djelli zebu population is almost homogeneous and that the current levels of differentiation observed between the subpopulations would be due to the various farming systems practiced (place, duration and degree of influence of transhumance) by breeders in the different administrative departments. The differences in the breeding systems led in a different way to various degrees of introgression of the zebu Djelli especially in the departments of Kollo and Say while in Niamey where the animals were bred in the sedentary breeding system, it was noted a low level of introgression. The results of the Bayesian analysis for the detection of genetic structure (Figure 19) suggested that most of the animals in Niamey would come from the Tera region. The same trend was observed on the Neighbour-joining tree (figure 5). A gradient of admixture among the subpopulations studied was observed: from the less to the most level of introgression, we have Niamey department subpopulation followed by Tera, Kollo and Say subpopulations respectively.

The molecular results are in consistence with those obtained in phenotypic characterization of the Djelli zebu (Zakari et al. 2019). Indeed, Zakari et al. (2019) showed that the differences observed in the breeding conditions between the for administrative department influenced significantly the phenotypic characteristics of Djelli zebu in the study area. The promotion of this breed will require the improvement of its breeding conditions and the promotion of initiatives for its sustainable use through for example the creation of a breed or Djelli zebu breeders association, the creation of a value chain around the Djelli zebu.

CONCLUSION

A high genetic diversity was observed in Djelli zebu population of Niger. A weak genetic structuration exists in Djelli zebu population characterized by a low level of differentiation among the four subpopulations included in this study. The farming system of the breed based essentially on pastoralism might influence the level of introgression of the Djelli zebu observed. The identification of the origin of this introgression requires another study including all the cattle breeds of Niger (Bororo, Azawak, Gudali, and Kuri). The high genetic diversity observed in Djelli zebu population is very important to initiate a program of genetic improvement and sustainable management of this breed in Niger with a high involvement of the local breeder’s communities.

www.wjpls.org
ACKNOWLEDGEMENTS

This study was conducted as part of the Project titled “Projet de Valorisation des ressources génétiques animales et aquacoles locales dans l’espace UEMOA / Valorization project of local animal and aquacultural genetic resources in the West African Economic and Monetary Union (PROGEVAL)” funded by the CORAF - UEMOA Agreement in collaboration with the University's Faculty of Agronomy Abdou Moumouni from Niamey. We extend our sincere thanks to these technical and financial partners. We also thank all the technical agents of the veterinary services and the breeders for their help and agreement for the data collection.

REFERENCES

