Research Artícle

World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org

SJIF Impact Factor: 3.347

DEVELOPMENT AND VALIDATION OF SIMULTANEOUS EQUATION METHOD FOR ESTIMATION OF METRONIDAZOLE BENZOATE AND RELATED IMPURITY IN BULK AND PHARMACEUTICAL FORMULATION

Tabassum H. Aaraf*1 and Hasumati A. Raj2

¹Department of Pharmaceutical Analysis, Shree Dhanvantary College of Pharmacy, Kim, Surat, Gujarat, India.

²Shree Dhanvantary Pharmaceutical Analysis & Research Centre, Kim, Surat, Gujarat, India.

Article Received on 01/12/2015 Article Revised on 20/12/2015 Article Accepted on 12/01/2016

*Correspondence for Author Tabassum Hidayat Aaraf Department of Pharmaceutical Analysis, Shree Dhanvantary College of Pharmacy, Kim, Surat, Gujarat, India.

ABSTRACT

A simple, accurate and precise spectroscopic method was developed for simultaneous estimation of Metronidazole Benzoate and related impurity in bulk and pharmaceutical formulation by simultaneous equation method. The Metronidazole Benzoate shows max absorbance at 310.09 nm, 2-Methyl-5Nitroimidazole show max absorbance at 300 and Benzoic Acid shows max. Absorbance at 225.81 nm. The method was found to be linear (r2>0.999) in the range of 2.0-10 µg/ml. The

limit of determination was 0.079 μ g/ml and 0.055 μ g/ml and0.043 μ g/ml for Metronidazole Benzoate, 2-Methyl-5-Nitroimidazole and Benzoic Acid, respectively. The limit of quantification was 0.263 μ g/ml and 0.184 μ g/ml and 0.132 μ g/ml for Metronidazole Benzoate,2-Methyl-5-Nitroimidazole and Benzoic Acid, respectively. The accuracy of this method was evaluated by recovery studies and good recovery result was obtained greater than 99%. The method was successfully applied for simultaneous determination of Metronidazole Benzoate, 2-Methyl-5-Nitroimidazole and Benzoic Acid.

KEYWORDS: Metronidazole Benzoate, 2-Methyl-5-Nitroimidazole, Benzoic Acid, Simultaneous equation method.

INTRODUCTION^[1,2]

Metronidazole is an anti-protozoan and antibacterial agent belonging to the class of Nitroimidazoles. Metronidazole is active against a wide range of pathogenic anaerobic Gramnegative micro-organisms notably species of Bacteroides fragilis and spp., Fusobacterium spp, Gardnerella vaginalis, and anaerobic Gram positives such as Peptococcus spp., Peptostreptococcus spp., Clostridium spp. It is also active against protozoaes such as Trichomonas vaginalis, Entamoeba histolytica, Giardia lamblia. Metronidazole was first approved by sanofi-aventis for marketing in France and its International Birth Date (IBD) is 29 July 1959. Since that time it has been registered and arketed worldwide. In Europe, (sanofi-aventis) Metronidazole is currently approved by national procedures and marketed in 19 countries in various formulations, such as tablets, oral suspensions, suppositories, intravenous solution, vaginal pessaries/tablets. Metronidazole is an antimicrobial agent that has been used in clinical medicine for >45 years. Metronidazole has been shown to be carcinogenic in mice and rats. Unnecessary use of the drug should be avoided.

MATERIAL AND METHOD

A double beam UV/Visible spectrophotometer (Shimadzu model 2450, Japan) with spectral width of 2 nm, 1 cm quartz cells was used to measure absorbance of all the solutions.Spectra were automatically obtained by UV-Probe system software.An analytical balance (Sartorius CD2250, Gottingen, Germany) was used for weighing the samples. Sonicator (D120/2H, TRANS-O-SONIC). All instruments and glass wares were calibrated. Metronidazole Benzoate and 2-Methyl-5-Nitoimidazole raw material was received as gift sample from Dano Pharmacham Pvt.Ltd. Ankleswar. Metronidazole raw material was material was received as gift sample from Mc coy Drug Pvt. Ltd. Sachin.

Benzoic acid AR Grade. Methanol AR Grade, Distilled water, 0.1 N HCl, 0.1N NaOH were used for development purpose.

PREPARATION OF STANDARD SOLUTIONS

Standard solution of Metronidazole Benzoate (MTZ)

Accurately weighed quantity of Metronidazole Benzoate 10 mg was transferred to 100ml volumetric flask, dissolved and diluted up to mark with Methanol to give a stock solution having strength 100µg/ml.

Standard solution of 2-Methyl-5-Nitroimidazole (MNI)

Accurately weighed quantity of 2-Methyl-5-Nitroimidazole 10 mg was transferred into 100 ml volumetric flask, dissolved and diluted up to mark with Methanol to give a stock solution having strength 100μ g/ml.

Standard solution of Benzoic Acid (BA)

Accurately weighed quantity of Benzoic acid 10 mg was transferred to 100ml volumetric flask, dissolved and diluted up to mark with Methanol to give a stock solution having strength 100µg/ml.

Preparation of standard mixture

Pipette out accurately 1.0 ml of Metronidazole Benzoate stock solution ($100\mu g/ml$), 1.0 ml of 2-Methyl-5-Nitroimidazole stock solution ($100\mu g/ml$) and 1.0 ml of Benzoic acid stock solution ($100\mu g/ml$) in 10 ml volumetric flask and make up the volume up to the mark with Methanol. It gives solution containing Metronidazole Benzoate $10\mu g/ml$, 2-Methyl-5-Nitroimidazole $10\mu g/ml$ and Benzoic acid $10\mu g/ml$.

RESULT AND DISCUSSION

The standard solution of Metronidazole Benzoate ($10\mu g/ml$), 2-Methyl-5-Nitroimidazole ($10\mu g/ml$) and Benzoic acid ($10\mu g/ml$) were scanned separately between 200-400nm, and zero-order spectra show overlapping peaks.

Fig.4: Overlain zero order Spectra of MTZ, MNI And BA (1:1:1) Ratios, Respectively.

MTZ shows peak at 310.09 nm and 230.13 nm MNI shows at 300.0 nm and BA shows peaks at 225.81 nm. 310.09 nm is selected for Metronidazole Benzoate as difference between 225.81 and 230.13 is less than 10.

Validation Parameters^[3,4,5]

1. Linearity and Range

The zero order spectra showed linear absorbance at 310.09 nm for MTZ (2.0-10 μ g/ml), 300.0 nm for MNI (2.0-10 μ g/ml) and 225.81 nm for BA (2.0-10 μ g/ml).This method obeyed beer's law in the concentration range 2.0-10 μ g/ml for MTZ, MNI and BA. Correlation coefficient (r²) for calibration curve of MTZ, MNI and BA were found to be 0.9998, 0.9997 and 0.9998, respectively The regression line equation for MTZ, MNI and BA are as following,

y=0.028x + 0.019 for MTZ y = 0.040x + 0.066 for MNI y = 0.071x + 0.113 for BA

Fig.5: Overlain linear zero order spectra of BA (BLUE), MNI (RED) and MTZ (BLACK) IN 1:1:1 ratio.

Fig.6: Overlain linear zero order spectra of mixture of MTZ, MNI AND BA in ratio of 1:1:1

Table.1: Calibration data for mixture of MTZ, MNI and BA at 310.09 nm, 300.0 nm AND 225.81 nm, Respectively *(n=6).

Concentration (ug/ml)		Absorbance ± SD*					
Sr. No	Concen	uration	µg/m)	(210.00 nm)	(200 0) (225 81		
	MTZ	MNI	BA	(310.09 1111)	(300.01111)	(22 5. 81 nm)	
1	2.0	2.0	2.0	0.181 ± 0.00057	0.188 ±0.00113	0.501 ± 0.00115	
2	4.0	4.0	4.0	0.321±0.00115	0.331±0.00115	0.684 ± 0.00059	
3	6.0	6.0	6.0	0.485 ± 0.00054	0.503 ± 0.00058	1.061±0.00116	
4	8.0	8.0	8.0	0.622 ± 0.00116	0.646±0.00063	1.341±0.00213	
5	10.0	10.0	10.0	0.739 ± 0.00109	0.766±0.00163	1.690 ±0.00503	

Table.2: Calibration Data For MTZ, MNI AND BA AT 310.09 nm, 300.0 nm and 225.81 nm, RESPECTIVELY. *(n=6).

Concentration		Absorbance ± SD				
SI. No	(µg/ml)		MTZ	MNI	BA	
110	MTZ	MNI	BA	(310.09 nm)	(300.0 nm)	(225.81 nm)
1	02	02	02	0.078 ± 0.00086	0.151 ± 0.00052	0.261 ± 0.00086
2	04	04	04	0.129 ± 0.00083	0.221 ± 0.00081	0.392 ± 0.00056
3	06	06	06	0.193 ± 0.00075	0.315 ± 0.00053	0.541 ± 0.00086
4	08	08	08	0.248 ± 0.00051	0.395 ± 0.00089	0.673 ± 0.00089
5	10	10	10	0.304 ±0.00104	0.473±0.00093	0.831 ± 0.00083

Fig.7: Calibration Curve for MTZ AT 310.04 nm

FIG.8: Calibration curve for MNI at 300.0nm.

FIG.9: Calibration Curve for BA AT 225.36 nm.

Equations

 $\begin{array}{l} A_1 * = A_1 - 0.155 \\ A_2 * = A_2 - 0.085 \\ A_3 * = A_3 - 0.046 \end{array}$

$$C_{x} = \frac{0.000162922 \text{ A1}^{*} + 0.000866232 \text{ A2}^{*} + 0.000954954 \text{ A3}^{*}}{0.00000742}$$

$$C_{y} = \frac{-0.000002\text{ A1}^{*} + 0.002742\text{ A2}^{*} - 0.001794 \text{ A3}^{*}}{0.00000742}$$

$$C_{z} = \frac{-0.000001 \text{ A1}^{*} - 4.215 \text{ A2}^{*} + 0.002813 \text{ A3}^{*}}{0.00000742}$$

Where A_1 = Absorbance of test solution at 225.81 nm

 A_2 = Absorbance of test solution at 300.0 nm

 A_3 = Absorbance of test solution at 310.09 nm

Cx, Cy and Cz are the concentration of Metronidazole Benzoate, 2-Methyl-5-Nitroimidazole and Benzoic Acid, respectively

2. Precision

I. Intraday precision

The data for intraday precision for combined standard solution of MTZ, MNI and BA is presented in Table .The % R.S.D was found to be 0.11 -0.31 % for MTZ, 0.17-0.45 % for MNI and 0.15-0.25 % for BA.These %RSD values were found to be less than \pm 2.0 indicated that the method is precise.

Cor	Conc. (µg/ml)		MTZ(310.09 nm)	MNI(300.0 nm)	BA(225.81 nm)
MTZ	MNI	BA	Avg.± RSD*	Avg.±RSD*	Avg. ± RSD*
2.0	2.0	2.0	0.181 ±0.31	0.188 ± 0.45	0.501 ±0.19
4.0	4.0	4.0	0.321 ±0.35	0.331 ±0.34	0.684 ± 0.25
6.0	6.0	6.0	0.485 ±0.11	0.503 ±0.17	1.061 ±0.15

Table.	3:	Intraday	precision	data for	estimation	ı of MTZ,	MNI ar	ıd BA*(ı	n=3).
								· · · · · · · · · · · · · · · · · · ·	

II. Interday precision

The data for interday precision for combined standard solution of MTZ, MNI and BA is presented in Table. The % R.S.D was found to be 0.13-0.54 % for MTZ, 0.19-0.30 % for MNI and 0.18-0.23% for BA. These %RSD values were found to be less than \pm 2.0 indicated that the method is precise.

Table.4: Interday precision data for estimation of MTZ, MNI and BA*(n=3).

Conc. (µg/ml)		MTZ(310.09 nm)	MNI(300.0 nm)	BA(225.81 nm)	
MTZ	MNI	BA	Avg.± RSD*	Avg.±RSD*	Avg. ± RSD*
2.0	2.0	2.0	0.182 ±0.54	0.188 ± 0.30	0.502 ± 0.23
4.0	4.0	4.0	0.322 ±0.35	0.332 ± 0.53	0.684 ± 0.29
6.0	6.0	6.0	0.486 ±0.13	0.503 ±0.19	1.062 ± 0.18

3. Accuracy

Accuracy of the method was determined by recovery study from dosage form at three levels (80%, 100%, and 120%) by spiking method. The % recovery values are tabulated in Table. Percentage recovery for MTZ, MNI and BA by this method was found in the range of 100.02 to 100.09 %, 100.05 to 100.76 % and 100.01 to 100.95 %, respectively. The value of %RSD within the limit indicated that the method is accurate and percentage recovery shows that there is no interference from the excipients.

TABLE.5 Recovery data of MTZ *(n=3)

Conc. of MTZ from formulation (µg/ml)	Amount of Std.MTZ added (µg/ml)	Total amount of MTZ (µg/ml)	Total amount of MTZ found (µg/ml) Mean ± SD*	% Recovery (n=3)	% RSD MTZ
8.0	6.4	14.4	14.42 ± 0.0038	100.02	0.26
8.0	8.0	16	16.09 ± 0.0133	100.09	0.82
8.0	9.6	17.6	17.61 ± 0.0322	100.08	0.18

Conc. of MNI from formulation (ug/ml)	Amount of Std.MNI added (ug/ml)	Total amount of MNI (ug/ml)	Total amount of MNI found (µg/ml) Mean ± SD*	% Recovery (n=3)	% RSD MNI
0.0	0.64	0.64	0.644 ± 0.0041	100.76	0.64
0.0	0.8	0.8	0.807±0.0043	100.94	0.51
0.0	0.96	0.96	0.960 ± 0.0082	100.05	0.24

Table.6: Recovery data of MNI*(n=3).

 Table.7: Recovery data of BA*(n=3).

Conc. of BA from formulation (µg/ml)	Amount of Std. BA added (µg/ml)	Total amount of BA (µg/ml)	Total amount of BA found (µg/ml) Mean ± SD*	% Recovery (n=3)	% RSD BA
0.0	0.64	0.64	0.646 ± 0.0038	100.95	0.81
0.0	0.8	0.8	0.802 ± 0.0075	100.32	0.93
0.0	0.96	0.96	0.961±0.0011	100.01	0.12

4. Limit of Detection and Quantification

The LOD for MTZ, MNI and BA was conformed to be $0.079\mu g/ml$, $0.055\mu g/ml$ and $0.043 \mu g/ml$ respectively. The LOQ for MTZ, MNI and BA was conformed to be $0.263 \mu g/ml$, $0.184\mu g/ml$ and $0.132 \mu g/ml$ respectively. The obtained LOD and LOQ results are presented in Table

$$LOD = 3.3 \times \frac{SD}{Slope}$$
$$LOQ = 10 \times \frac{SD}{Slope}$$

Con	Conc. (µg/ml)		MTZ(310.09 nm) (n=10)		MNI(300.0 nm) (n=10)		BA(225.81 nm) (n=10)	
MTZ	MNI	BA	Avg. ± SD*	% RSD	Avg.± SD*	% RSD	Avg. ± SD*	% RSD
2.0	2.0	2.0	0.182±0.00073	0.41	0.187 ± 0.00082	0.43	0.502 ± 0.00094	0.18
LOD(µg/ml)		0.079		0.055		0.043		
LOQ(µg/ml)		0.263		0.184		0.132		

Table.8: LOD and LOQ data of MTZ, MNI and BA*(n=10).

5. Robustness and Ruggedness

The obtained Ruggedness and Robustness results are presented in table 6.2.10.

The % R.S.D was found to be 0.31 - 0.84 % for MTZ, 0.34 - 0.96 % for MNI and 0.25 - 0.83 % for BA. These %RSD value was found to be less than ± 2.0 indicated that the method is precise. No significant changes in the spectra were observed, proving that the

developed method is rugged and robust. For different stock solutions for MTZ,MNI and BA stock-1 is 100 μ g/ml and stock-2 is 50 μ g/ml.

	Componention	Mean ±%	RSD(n=3)	Mean ±% RSD(n=3)		
Drugs	(ppm)	Stock Solution I	Stock Solution II	Instrument I	Instrument II	
	02	0.181 ± 0.84	0.183 ± 0.54	0.182±0.37	0.183±0.62	
Metronidazole Benzoate	04	0.322±0.47	0.324 ± 0.61	0.324 ± 0.61	0.323±0.64	
	06	0.488±0.31	0.486±0.33	0.487±0.35	0.489 ± 0.41	
	02	0.104±0.55	0.104 ± 0.96	0.105 ± 0.93	0.107±0.54	
2-Methyl-5- Nitroimidazole	04	0.213±0.71	0.214 ± 0.71	0.215±0.70	0.216±0.96	
	06	0.317±0.48	0.317 ±0.34	0.317±0.48	0.317±0.48	
	02	0.501±0.34	0.503 ± 0.51	0.504 ± 0.59	$0.502{\pm}0.83$	
Benzoic Acid	04	0.685±0.25	0.684 ± 0.62	0.684 ± 0.48	0.686 ± 0.53	
	06	1.061±0.40	1.064 ±0.36	1.063 ± 034	1.065 ±0.46	

Table.9: Robustness and Ruggedness data of MTZ, MNI and BA*(n=3).

Application of the proposed method for analysis of metronidazole benzoate oral suspension

Metronidazole Benzoate oral suspension contains **200mg/5 ml** and Pipette out accurately 1.0 ml of suspension in to 100 ml volumetric flask make up the volume with Methanol, sonicate for 15 min. Filter it with Nylon membrane filters (0.22 μ m, 20 mm D) Pipette out 1.0 ml dillute solution into 100 ml volumetric flask make up the volume using Methanol Measure absorbance at 310.09 nm, 300.0 nm and 225.81 nm Determine the concentration of MTZ using equation.

Table.10:	Analysis	data of	commercial	formulation	*(n=3).
-----------	----------	---------	------------	-------------	---------

DRUGS	% Assay ± % RSD(n=3)	IP LIMIT
Metronidazole Benzoate	100.84 ±0.47	98.0-101.0%

Parameter	Metronidazole Benzoate	2-Methyl-5- Nitroimidazole	Benzoic Acid
λ_{max}	310.09 nm	300.0 nm	225.81 nm
Concentrationrange(µg/ml)	2.0 - 10	2.0 - 10	2.0-10
Regression equation	y = 0.028x + 0.019	y = 0.040x + 0.066	y = 0.071x + 0.113
Correlation coefficient (r ²)	0.999	0.999	0.999
Accuracy (%Recovery) (n=3)	100.24	100.58	100.44
Intra-day Precision (%RSD) (n=3)	0.11 – 0.31	0.17 - 0.45	0.15 - 0.25
Inter-day precision (%RSD) (n=3)	0.13 - 0.54	0.19 - 0.53	0.18 - 0.29
LOD (µg/ml)	0.079	0055	0.043
LOQ (µg/ml)	0.263	0.184	0.132
Ruggedness and Robustness	0.31–0.84	0.34-0.96	0.25-0.83
% Assay	100.84	_	_

Validation	Parameter
	Validation

CONCLUSION

The developed UV-spectroscopy method was proved to be simple, rapid & reproducible. The validation data indicate good specificity, precision, accuracy & reliability of the method. The developed method offers several advantages in terms simultaneous determination of Metronidazole Benzoate and related impurity in bulk and pharmaceutical formulation.

ACKNOWLEDGEMENT

We are sincerely thankful to Shree Dhanvantary Pharmacy College, Kim, Surat, for providing us infrastructure facilities and moral support to carry out this research work. We are also thankful to SDPARC for giving us their special time and guidance for this research work. We also thank our colleagues for their helping hand.

REFERENCE

- 1. Introduction Available on: 2010 www.ebookbrowse.com/metronidazole- metronidazole- spiramycin.
- Rao N R, Mani S S, and Prasanthi N.L, "Pharmaceutical Impurities: An Overview." *Indian J.Pharm. Educ. Res.*, 2010; 44(3): 301-309.

- 3. International Conference on Harmonization, Harmonized Tripartite Guideline, Validation of Analytical Procedures Text and Methodology, ICH Q2(R₁), 2005.
- 4. Davidson AG, Beckett AH and Stenlake JB; Practical Pharmaceutical Chemistry; 4th edition, part-2; CBS Publishers, New Delhi, 2002; pp. 275-300.
- 5. Engineering Mathamatics; Open Learning Unit Level 1:"Cramer's Rule for Solving Simultaneous Linear Equations", www.3.ul.ie/chap 8/8.1.pdf.