

# World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org



## METHODS TO PREPARE SOLID DISPERSIONS OF BCS CLASSIFIED DRUGSON THE UTILIZATION OF VARIOUS CARRIERS: AN UPDATED REVIEW

Dr. CH. Suryakumari\*<sup>1</sup>, S. Sureshbabu<sup>2</sup>, S. K. Asha Begham<sup>3</sup>, G. Durgarao<sup>2</sup>, K. Venketeswerarao<sup>2</sup>

<sup>1\*</sup>Pharmaceutics Research Lab, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL Deemed to be University, Guntur (Dt.), Andhra Pradesh-522 502, India.

<sup>2</sup>Dept. of Pharmaceutics, Vikas College of Pharmacy, Vissannapeta, Krishna (Dt.), AP.521 215. <sup>3</sup>Nimra College of Pharmacy, Nimra Nagar, Ibrahimpatnam, Vijayawada, Krishna (Dt). Pin 521456.

## \*Corresponding Author: Dr. CH. Suryakumari

Pharmaceutics Research Lab, K L College of Pharmacy, Koneru Lakshmaiah Education Foundation, KL Deemed to be University, Guntur (Dt.), Andhra Pradesh-522 502, India.

Article Received on 28/01/2020

Article Revised on 18/02/2020

Article Accepted on 08/03/2020

SJIF Impact Factor: 6.129

### **ABSTRACT**

In preparation of formulation, the solubility factor remains a key concern. Now a day, many drugs especially in BCS class II and IV are observed to have less solubility. Among all solubility enhancing techniques practiced in pharmaceutical field, solid dispersions have proved to be most suitable for improving the bioavailability of these chemical entities. During the preparation of solid dispersion, carriers play a vital role in enhancing the dissolution of hydrophobic drugs. This article however reviews various methods and carriers used for the preparation of solid dispersion, with main emphasis on which carriers and methods have been widely used by researchers over the decades, till now.

## INTRODUCTION

Among the drug administration methods, oral route is the most suitable and preferable method for drug delivery, owing to its easy ingestion and convenience. Taking drug orally is more compliant then other routes of administration, but this route of administration presents serious problems regarding the mode of delivery for a significant number of reasons. Poor bioavailability.

Is the major issue. Multiple techniques including: cosolvent-solubilization method, particle size reduction, complex formation using cyclodextrin, salt formation and many others were used to combat these issues, but all had some limitations.

Solid dispersion, in comparison to all other approaches proved to be the best suitable technique. Sekiguchi and obi were the first, who came with the idea of preparing solid dispersion to overcome the issue of poor bioavailability and for sustained release of drug. A dispersion containing a minimum of two components in inert matrix (one hydrophilic and other hydrophobic), in order to increase the dissolution rate and permeability of poorly water-soluble drugs, is known as solid dispersion. The carriers used in the preparation of solid dispersion vary in grades and nature (crystalline or amorphous). However, various grades of PEGs, PVPs, urea and sugar, are the among the most used carriers in the preparation of solid dispersions.

The literature review indicates that the use of solid dispersion has been for decades. Moreover, the main aim of this review is to provide a background on solid dispersion, its various methods of preparation, and the selection of carrier owing to the drug characteristics. However, the main emphasis is on the carriers and type of methods used to prepare solid dispersion over the past few decades, along with the comparison that which method and carriers were found most suitable for its preparation.

## **Methods of Preparation of Solid Dispersion**

Various methods of preparation are suggested for the preparation of solid dispersions and researchers have utilized them accordingly.

**Fusion (melting) Method** In this process, a physical mixture containing drug and carrier is prepared and melted until a liquid state is achieved. This Liquid mixture is later cooled to form dry mass. Sekiguchi and obi used this method for the preparation of sulfathiazole. However, this method is not preferable for thermo labile drugs owing to its immiscibility between the drug and carrier.

## **Solvent evaporation Method**

This process involves the dissolution of drug and carrier in a same solvent at the same time. The resultant solution is then subjected to evaporation, using various techniques such as: vacuum or slow evaporation

methods, heating, spray drying, or freeze drying. The substance which has its limitations in fusion method could use this technique.

### **Spray Drying**

This is a sophisticated technique, where after the preparation of physical mixture of drug and carrier, the solution is evaporated in chamber. The solution is sprayed under specified conditions in the chamber and later separated after drying.

#### Solvent Method

This process is the amalgamation of melting and solvent evaporation method, that's why known as melting solvent method. This technique involves the dissolution of drug in specified solvent and later in carrier. The final solution is then cooled until a dry mass is achieved. This method is most suitable for thermo labile drugs and carriers.

#### Lyophilization

Lyophilization also known as freeze drying, is a method in which the drug-carrier solution containing solvent is initially subjected to freezing followed by drying at less pressure. However, this is a time taking process yet giving fewer yields.

## **Kneading Method**

In this technique, a paste is produced using suitable carrier and water as a solvent. The drug is then

incorporated and kneaded for drying. Moisture sensitive drugs have its limitations in this method.

## **Co-grinding Method**

The blender containing the drug and carrier is blended at a specified speed to form a powder, which is later transferred to vibrating ball mill. The resultant mixture is pulverized and gathered for future use.

## Co-precipitation Method

In this process, the carrier is primarily mixed with a suitable solvent to form a solution. The drug is later added to this solution and subjected to agitation under magnetic stirrer. The final precipitates formed are collected via vacuum filtration, and later dried.

#### **Super Critical Fluid Technique**

This is an advanced technique, where the physical mixture of drug and carrier is dissolved in a suitable solvent. The final solution is sprayed in a chamber using atomizer, where particles are formed. The chamber, which is occupied with super critical fluids (mainlyCO<sub>2</sub>), captures the solvent as soon as the drug carrier solution enters the chamber, leading to the formation of solid dispersed particles. These particles are later collected from the walls of chamber.

Table 1: Classifications of solid dispersions.

| Solid dispersions                              | Matrix | Drug** | no.ofphases | Remarks                                                                                          |  |
|------------------------------------------------|--------|--------|-------------|--------------------------------------------------------------------------------------------------|--|
| 1. Eutectics                                   | С      | С      | 2           | 1st solid dispersion                                                                             |  |
| 2.Amorphousprecipitationsi ncrystalline matrix | С      | A      |             | Rarely encountered                                                                               |  |
| 3. solid solutions continuous solid solutions  | С      | M      | 1           | Never prepared                                                                                   |  |
| Discontinuous solid solutions                  | С      | M      | 2           | partially miscible, drug is molecularly dispersed                                                |  |
| Substitutional solid solutions                 | С      | M      | 1 OR 2      | molecular diameter of drug is £ 15% of polymer                                                   |  |
| Interstitial solid solutions                   | С      | M      | 2           | molecular diameter of drug is £ 59% of polymer                                                   |  |
|                                                |        |        |             | Limited miscibility and discontinuous                                                            |  |
| 4. Glass suspension                            | A      | С      | 2           | Particlesizeofdispersedphasedependsuponcooling/<br>evaporation rate                              |  |
| 5. Glass suspension                            | A      | A      | 2           | Particlesizeofdispersedphasedependsuponcooling/<br>evaporation rate mostly encountered           |  |
| 6. Glass suspension                            | A      | M      | 1           | Requires miscibility/solidsolubility,complexformationorupon cooling/evaporationduringpreparation |  |

\*A:Matrixintheamorphousstate;c:Matrixinthecrystallinestate;\*\*A:drugdispersedasamorphousclustersinthematrix;c:drugdispersed as crystalline particles in the matrix

## Carriers Used in the Preparation of Solid Dispersion Polyethylene glycol (PEG)

PEG (molecular weight: 200-300000), are polymers of ethylene oxide. The molecular weight (MW) plays a vital role in the preparation of solid dispersion, as the

molecular weight and viscosity are directly proportional to each other (greater the MW, greater will be the viscosity). However, MW ranging from 1500-20000 is desired for the preparation of solid dispersion.

They are soluble in water, also improves the wet ability of compound which gives it the advantage in enhancing the dissolution rate of drug.

#### **Polyvinylpyrrolidone** (PVP)

PVP, a polymer of vinylpyrrolidone, has a molecular weight falling between 2500-3000000. Moisture content and MW are Responsible for the maintenance of PVP's temperature. It is used in various methods of solid dispersions such as: solvent evaporation method owing to its increase solubility. It is also used in hot melt extrusion method due to its high melting point.

#### **Cellulose Derivatives**

Hydroxypropylmethylcellulose (HPMC), molecular weight (10000-1500000), is unsymmetrical ethers of cellulose. Due to its excellent solubility in water, HPMCs are widely used in the formation of solid dispersion. Researchers have seen enhanced solubility of nilvadipine (poorly water-soluble drug), when used with HPMC.

Hydroxypropylcellulose (HPC), a derivative of cellulose has a MW of 37000-1150000. The solubility of HPC in solvents is high and varies to a wide range of solvents (ethanol, chloroform, water).

Carboxymethylethylcellulose (CMEC), is a class of cellulose with mixed ethers. In comparison to other cellulose derivatives, the dissolution rate of CMEC is altered in stomach due to acidic  $p^Hs$  its dissolution in many solvents like ethanol, acetone and isopropanol is excellent and quick. However, its dissolution is rapid at pH above 6.

Hydroxypropylmethylcellulose phthalate (HPMCP), esters of cellulose, have a MW between 20000-20000. Their pH of dissolution falls between 5-5.5. However, their solubility in different solvents depends on the type of HPMCP used.

#### **Polyacrylates and Polymethacrylates**

These are the type of polymers which owing to their transparency are known as plastics. Methacrylate and acrylic acid undergo process of polymerization to produce these polymers. In market, they appear by the name of Eudragit (varying in grades). Some of the Eudragit grades like Eudragit L prevents the release of drug in gastric pH. However, other grades like Eudragit E, due to its high solubility, increases the drug release. They are mainly used to coat the drugs, in order to control their release.

#### Urea

Urea, which is produced in the final step of metabolism of human protein, is considered to be sparingly soluble in water and many solvents. Due to their non-toxic effect in human body, they are also used as carrier for the preparation of solid dispersion by many researchers (Table 2).

Table 2: Preparation of solid dispersion using various methods and carriers on BCS class drugs.

|   | Drug name and<br>BCS class          | Therapeutic class               | Method                                              | Carrier                  | Conclusion                                                                                             | Refer-<br>ence |
|---|-------------------------------------|---------------------------------|-----------------------------------------------------|--------------------------|--------------------------------------------------------------------------------------------------------|----------------|
| 1 | Glyburide (Class<br>II)             | Oral<br>Hypoglycemic            | melt and solvent<br>methods                         | PEG 4000,<br>PEG 6000    | Increased dissolution rate with glyburide PEG solid Dispersion                                         | [9]            |
| 2 | Nifedipine (class II)               | Calcium<br>-channel<br>Blockers | Co-precipitation method                             | PEG<br>PC-PEG            | Increased dissolution of Nifedipine PC-PEG solid dispersion than Nifedipine PEG solid dispersion.      | [23]           |
| 3 | Griseofulvin<br>(class II)          | Anti-fungal                     | eutectic mixture<br>System (fusion<br>melt method). | succinic acid            | Increaseddissolutionratesof<br>Griseofulvin                                                            | [24]<br>25]    |
| 4 | Fenofibrate<br>(class II)           | Fibrate class                   | Melting method                                      | PEG 6000<br>and PVP      | Dissolution rate of Fenofibrate was decreased.                                                         | [25]           |
| 5 | Indomethacin<br>(IMC)<br>(class II) | NSAID                           | spray-<br>drying method                             | Aerosil200<br>Sylysia350 | ThedissolutionrateofIMC withSylysia350wasfaster than that of Aerosil 200                               | [26]           |
| 6 | Gliclazide (class<br>II)            | antidiabetic agent              | Solvent<br>Evaporation<br>method                    | (PEG) 6000               | Increased in Gliclazide dissolution in the presence of PEG 6000 was followed by Improved in vivo data. | [27]           |
| 7 | Indomethacin (class II)             | NSAID                           | co-precipitation<br>and<br>spray drying             | (PVP) 17<br>or 90        | PVP17hasfasterdissolution rate than PVP 90                                                             | [28]           |
| 8 | Diflunisal<br>(classII)             | NSAID                           | Solvent<br>evaporation<br>method                    | PEG                      | Increase solubility of drug                                                                            | [29]           |

| 9  | Spironolactone (class II)                 | Potassium-sparing diuretics.                | Solvent<br>method                                                                                                 | Sylysia 730 and<br>Sylysia 350                                                  | Dissolution rate is faster with Sylysia 350                                                                                          | [30] |
|----|-------------------------------------------|---------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|------|
| 10 | Nifedipine<br>(class II)                  | calcium-channel<br>blockers                 | Amorphous precipitation in crystalline matrix:                                                                    | PEG                                                                             | Amount of Crystalline drug with polymer decreased the dissolution rate                                                               | [31] |
| 11 | Meloxicam<br>(class II)                   | non-steroidal<br>anti-<br>inflammatory drug | Rotary vacuum evaporation technique                                                                               | skimmed milk                                                                    | Increased dissolution                                                                                                                | [32] |
| 12 | Piroxicam<br>(class II)                   | non-steroidal anti-<br>inflammatory drug    | fusion method                                                                                                     | Nicotinamide                                                                    | PNC1 capsule solid dispersion has higher dissolution and absorption rate then PNC1A capsule                                          | [33] |
| 13 | Vemurafenib<br>(class IV)                 | Anticancer                                  | Precipitation method                                                                                              | hypromellose acetate succinate (HPMCAS)                                         | enhancing solubility with an<br>amorphous-solid dispersion is<br>a preferable technique for the<br>development of insoluble<br>drugs | [34] |
|    | Bropirimine<br>(class II)                 | Anticancer                                  | Co-precipitation method                                                                                           | β-cyclodextrin<br>polyethylene glycol 6000                                      | βCD inclusion complex had<br>faster dissolution rate then<br>PEG 6000 solid dispersions                                              | [35] |
| 15 | Itraconazole<br>(class II)                | Antifungal                                  | evaporation and freeze drying                                                                                     | polymers (PVP K-12, K29/32,<br>K90; PVP VA S-630; HPMC-P<br>55; and HPMC-AS HG) | Amorphous solid dispersion is preferable in increasing the bioavailability                                                           | [36] |
| 16 | Carvedilol<br>(class II)                  | beta blocker                                | Spray drying method                                                                                               | Polyvinylpyrrolidone(PVP)                                                       | PVP had a role in the release property of Carvedilol and increased the dissolution rate                                              | [37] |
| 17 | Glibenclamide<br>(class II)               | antidiabetic drug                           | solvent<br>evaporation/ co-<br>precipitation<br>techniques<br>fusion method                                       | Hydrophilic and hydrophobic polymers                                            | Increase bioavailability and prolonged duration of action                                                                            | [38] |
| 18 | Meloxicam<br>(class II)                   | nonsteroidal anti-<br>inflammatory drug     | dropping method                                                                                                   | polyethylene glycol (PEG) 4000                                                  | The crystalline phase can help increase the dissolution rate from round particles.                                                   | [39] |
| 19 | Miconazole<br>nitrate<br>(class II)       | Antifungal                                  | fusion or co-<br>precipitation                                                                                    | PEG-6000 PVP-10,000<br>Urea                                                     | Solubilization and wetting is<br>found to be more essential then<br>particle size reduction in<br>increasing the dissolution         | [40] |
| 20 | Metformin<br>hydrochloride<br>(class III) | Oral<br>Hypoglycemic.                       | solvent<br>evaporation<br>closed melt<br>method                                                                   | compritol 888 ATO                                                               | SD prepared by solvent<br>evaporation method is more<br>effective in preparing sustained<br>release action                           | [41] |
| 21 | Simvastatin<br>(class II)                 | Antihyperlipidemic                          | fusion-cooling<br>and solvent<br>evaporation                                                                      | PEG 4000<br>Polyvinylpyrrolidone K30<br>(PVP K30)                               | Increased dissolution rate of drug with PEG and PVP                                                                                  | [42] |
| 22 | Cefuroxime<br>(class II)                  | Cephalosporin                               | Spray drying                                                                                                      | Gelucire 50/13 Aerosil 200                                                      | Improved bioavailability                                                                                                             | [43] |
| 23 | Piroxicam<br>(class II)                   | NSAID                                       | solvent method<br>melting method<br>melting-solvent<br>method, co-<br>grinding method,<br>kneading method<br>(KM) | Pluronic F-98                                                                   | increased dissolution rate<br>because of wettability and<br>dispersibility, particle size<br>reduction                               | [44] |
| 24 | (CBZ) (class II)                          | Antiepileptic                               | solvent method                                                                                                    | phospholipid (PL)<br>dimyristoylphosphatidylglycerol                            | CBZ:PL solid dispersions cause increase bioavailability                                                                              | [45] |
| 25 | Benznidazole (BNZ) (class II)             | Anti-parasitic                              | solid dispersion<br>method<br>solvent                                                                             | (PEG 6000) (PVP K-30)                                                           | Increased solubility with PVP as compare to PEG improvement in the dissolution                                                       | [46] |
| _  | 1                                         | 1                                           |                                                                                                                   | 1                                                                               | rr-o . cinicin in the dissolution                                                                                                    |      |

| 26  | Efavirenz(class II)                      | antiretroviral             | evaporation and physical mixture methods            | polyethylene glycol                                                      | from 16% to 70% with solid<br>dispersion<br>technology                    | [47] |
|-----|------------------------------------------|----------------------------|-----------------------------------------------------|--------------------------------------------------------------------------|---------------------------------------------------------------------------|------|
|     | Telmisartan<br>(class II)                | Cardiovascular Agent       | Solvent                                             | Poloxamer 407, PEG 6000                                                  | Improved solubility od drug with polymers                                 | [48] |
| 28  | ŕ                                        |                            | solid dispersion<br>method                          | Polyvinylpyrrolidone (PVP)<br>hydroxypropyl β-<br>cyclodextrin(HPβCD)    | Ternary inclusion complex hadmorebioavailabilitythen solid dispersion     | [49] |
| 1   | (Class II)                               | lantidianetic agent        | spray drying<br>method                              | PVP K17, PVP K30, and HPMC<br>E3                                         | Increased solubility and dissolution of Pioglitazone SD                   | [50] |
|     | (class II)                               | NSAID                      | Kneading method                                     | Poloxamer 188                                                            | Enhance solubility                                                        | [51] |
| 31  | 1                                        | Calcium channel<br>Blocker | U                                                   | Poloxamer 407<br>PEG 6000                                                | Solubility with P407 was 3 times greater than PEG 6000                    | [52] |
|     | Ketoconazole<br>(class II)               | $\mathcal{C}$              | Coprecipitation method                              | PVP, polyacrylic acid, poly(2-hydroxyethylmethacrylate)                  | Drug in amorphous form increases the solubility of drug.                  | [53] |
| 33  | Pelubiprofen (class II)                  |                            | Solvent<br>evaporation<br>technique                 | Eudragit RS                                                              | Sustained release formulation is effective                                | [54] |
| - 1 | Metformin<br>hydrochloride<br>(class II) | Anti-diabetic              | Solvent<br>evaporation and<br>co-grinding<br>method | Methocel K100                                                            | 1:4 and 1:5 ratios were found effective in the sustained release of drug. | [55] |
|     |                                          | Immunosuppressive<br>agent | Solvent<br>evaporation<br>method                    | Lactose Ethylcellulose(EC) Hydroxypropylmethylcellulose (HPMC).          | Formulation of tacrolimus with EC and HPMC were found effective.          | [56] |
| 36  | Resveratrol (class<br>II)                | Stillbenoid                | hot-melt extrusion<br>method                        | PEG 6000, Poloxamer 188<br>propylene glycol monocaprylate,<br>castor oil | Dissolution rate was increased.                                           | [57] |
| 37  | (class II)                               | Anti-retroviral<br>drugs   | Co-precipitation method                             | CMC, butyrate, acetate, propionate, adepate and sebacate                 | Enhanced dissolution was observed in comparison to drug alone.            | [58] |
| 38  | Rifampin<br>(class II)                   | Anti-tuberculosis          | Spray drying<br>technique                           | cellulose ω-carboxyalkanoates                                            | Bioavailability was enhanced                                              | [59] |
| 39  | II)                                      | Antipneumocystic drug      | Hot-melt extrusion                                  | polysorbate 80 and 20, HPMC, PEG 400, Kollidon VA64 and 30               | Bioavailability was enhanced                                              | [60] |
| 40  | Ritonavir<br>(class II)                  | Anti-viral drug            | Co-precipitation method                             | alkyl cellulose<br>ω-carboxyesters                                       | Solubility was enhanced                                                   | [61] |

## **CONCLUSION**

The poor dissolution and bioavailability of orally administered drugs had been a concern. With many solubility enhancing techniques, solid dispersions have proved to be the most suitable method to overcome this issue. The review demonstrates that the researchers have mostly utilized drugs mentioned in BCS class II for enhancing the solubility of orally administered, poorly water-soluble drugs. However, very few works have been done on drugs with high solubility and low permeability (BCS class III). Moreover, multiple methods explained in this review are utilized for the preparation of solid dispersion but among all the preparation techniques and carriers, solvent evaporation and coprecipitation technique has found to be widely used technique. Among carriers, different grades of PVP and PEGs are being mostly employed. However, the recent advancement includes the use of different classes of alkyl cellulose  $\omega$ -car boxy esters, for the preparation of amorphous solid dispersion.

### REFERENCES

- Habib MJ. Pharmaceutical solid dispersion technology. CRC Press, USA, 2000.
- 2. Leuner C and Dressman J. Improving drug solubility for oral delivery using solid dispersions. Eur J Pharm Biopharm, 2000; 50: 47-60.
- 3. Chiou WL and Riegelman S. Pharmaceutical applications of solid dispersion systems. J Pharm Sci., 1971; 60: 1281-1302.
- 4. Craig DQ. The mechanisms of drug release from solid dispersions in water-soluble polymers. Int J Pharm, 2002; 231: 131-144.
- 5. Nikghalb LA, et al. Solid dispersion: Methods and polymers to increase the solubility of poorly soluble drugs. J ApplPharmSci., 2012; 2:170-175.

- 6. Yamashita K, et al. Establishment of new preparation method for solid dispersion formulation of tacrolimus. Int J Pharm, 2003; 267: 79-91.
- Chauhan B, et al. Preparation and characterization of etoricoxib solid dispersions using lipid carriers by spray dryingtechnique. AAPS PharmSciTech, 2005; 6: E405-E409.
- 8. Dhirendra K, et al. Solid dispersions: A review. Pak J Pharm Sci., 2009; 22: 234-246.
- 9. Betageri G and Makarla K. Enhancement of dissolution of glyburide by solid dispersion and lyophilization techniques. IntJPharm, 1995; 126:155-160.
- 10. Modi A and Tayade P. Enhancement of dissolution profile by solid dispersion (kneading) technique. AAPS Pharm Sci Tech, 2006; 7: E87.
- 11. Arias M, et al. Investigation of the triamterene–β-cyclodextrin system prepared by co-grinding. Int J Pharm, 1997; 153: 181-189.
- 12. Nakamichi K, et al. Method of manufacturing solid dispersion. Google Patents, 1995.
- 13. Savjani KT, et al. Drug solubility: importance and enhancement techniques. ISRN pharmaceutics, 2012.
- 14. Pasquali I, et al. Supercritical fluid technologies: an innovative approach for manipulating the solid-state of pharmaceuticals. Adv Drug Deliv Rev., 2008; 60: 399-410.
- 15. Vijay J, et al. A basic insight into the stability and manufacturing aspects of solid dispersions. Chronicles of Young Scientists, 2012; 3: 95.
- Guyot M, et al. Physicochemical characterization and dissolution of norfloxacin/cyclodextrin inclusion compounds and PEG solid dispersions. Int J Pharm, 1995; 123: 53-63.
- 17. Tantishaiyakul V, et al. Properties of solid dispersions of Piroxicam in Polyvinylpyrrolidone K-30. Int J Pharm, 1996; 143: 59-66.
- 18. Sethia S and Squillante E. Solid dispersion of Carbamazepine in PVP K30 by conventional solvent evaporation and supercritical methods. Int J Pharm. 2004; 272:1-10.
- Okimoto K, et al. Dissolution mechanism and rate of solid dispersion particles of nilvadipine with hydroxypropylmethylcellulose. Int J Pharm, 1997; 159: 85-93.
- 20. Ozeki T, et al. Application of the solid dispersion method to the controlled release of medicine. IX. Difference in the releaseofflurbiprofen from solid dispersions with poly (ethylene oxide) and hydroxypropylcellulose and the interaction between medicine and polymers. Int J Pharm, 1997; 155: 209-217.
- 21. HASEGAWA A, et al. Physical properties of solid dispersions of poorly water-soluble drugs with enteric coating agents. ChemPharm Bull, 1985; 33: 3429-3435.
- 22. Sharma A and Jain C. Solid dispersion: A promising technique to enhance solubility of poorly water soluble drug. Int J DrugDeliv, 2011; 3: 149-170.

- 23. Law S, et al. Dissolution and absorption of nifedipine in polyethylene glycol solid dispersion containing phosphatidylcholine. Int J Pharm, 1992; 84: 161-166.
- 24. Chiou WL and Niazi S. Pharmaceutical applications of solid dispersion systems: dissolution of Griseofulvin–succinic acid eutectic mixture. J Pharm Sci., 1976; 65: 1212-1214.
- 25. Ming-Thau S, et al. Characterization and dissolution of Fenofibrate solid dispersion systems. Int J Pharm, 1994: 103: 137-146.
- 26. Takeuchi H, et al. Solid dispersion particles of amorphous Indomethacin with fine porous silica particles by using spray drying Method. Int J Pharm, 2005; 293: 155-164.
- 27. Asyarie S and Rachmawati H. In vivo and in vitro evaluation of a solid dispersion system of Gliclazide: PEG 6000. PDA JPharm Sci Technol, 2007; 61: 400-410.