Research Artícle

World Journal of Pharmaceutical and Life Sciences <u>WJPLS</u>

www.wjpls.org

SJIF Impact Factor: 5.088

ANALYTICAL METHOD DEVELOPMENT VALIDATION OF MEROPENEM AND VABORBACTAM OF PURE AND DOSAGE FORMS USING RP-HPLC METHOD

K. Mounika*, L. Ramachandra Reddy and D. Dhachinamoorthi

Department of Pharm. Analysis and Quality Assurance, QIS College of Pharmacy, Ongole-523272.

*Corresponding Author: K. Mounika

Department of Pharm. Analysis and Quality Assurance, QIS College of Pharmacy, Ongole-523272.

Article Received on 20/07/2019

Article Revised on 10/08/2019

Article Accepted on 31/08/2019

ABSTRACT

A simple, Accurate, precise method was developed for the simultaneous estimation of the Meropenem and Vaborbactam in Tablet dosage form. Chromatogram was run through Agilent C18 (150 x 4.6 mm, 5 μ) Mobile phase containing Buffer 0.01N KH₂PO₄: Methanol taken in the ratio 50:50 was pumped through column at a flow rate of 0.8 ml/min. PH adjusted to 5.0 with dil. Orthophosphoric acid solution. Temperature was maintained at 30°C. Optimized wavelength selected was 260 nm. Retention time of Meropenem and Vaborbactam were found to be 2.1119 min and 2.654 min. %RSD of the Meropenem and Vaborbactam were and found to be 0.7 and 0.7 respectively. %Recovery was obtained as 99.52% and 100.04% for Meropenem and Vaborbactam respectively. LOD, LOQ values obtained from regression equations of Meropenem and Vaborbactam were 0.07, 0.21 µg/ml and 0.07, 0.21 µg/ml respectively. Regression equation of Meropenem is y = 8848.x + 698.1, and y = 8748.x + 998.1of Vaborbactam. Retention times were decreased and that run time was decreased, so the method developed was simple and economical that can be adopted in regular Quality control test in Industries.

KEYWORDS: Meropenem, Vaborbactam, RP-HPLC.

INTRODUCTION

The quality of a drug plays an important role in ensuring the safety and efficacy of the drugs. Quality assurance and control of pharmaceutical and chemical formulations is essential for ensuring the availability of safe and effective drug formulations to consumers. Hence Analysis of pure drug substances and their pharmaceutical dosage forms occupies a pivotal role in assessing the suitability to use in patients. The quality of the analytical data depends on the quality of the methods employed in generation of the data^[1] Hence, development of rugged and robust analytical methods is very important for statutory certification of drugs and their formulations with the regulatory authorities.

The quality and safety of a drug is generally assured by monitoring and controlling the assay and impurities effectively. While assay determines the potency of the drug and impurities will determine the safety aspect of the drug. Assay of pharmaceutical products plays an important role in efficacy of the drug in patients.

The wide variety of challenges is encountered while developing the methods for different drugs depending on its nature and properties. This along with the importance of achieving the selectivity, speed, cost, simplicity,

www.wjpls.org

sensitivity, reproducibility and accuracy of results gives an opportunity for researchers to come out with solution to address the challenges in getting the new methods of analysis to be adopted by the pharmaceutical industry and chemical laboratories. Different physico-chemical methods (1) are used to study the physical phenomenon that occurs as a result of chemical reactions. Among the physico-chemical methods, the most important are optical (refractometry, polarimetry, emission and fluorescence methods of analysis), photometry (photocolorimetry and spectrophotometry covering UV-Visible, IR Spectroscopy and nepheloturbidimetry) and chromatographic (column, paper, thin layer, gas liquid and high performance liquid chromatography) methods. Methods such as nuclear magnetic resonance (NMR) and para magnetic resonance (PMR) are becoming more and more popular. The combination of mass spectroscopy (MS) with gas chromatography is one of the most powerful tools available. The chemical methods include the gravimetric and volumetric procedures which are based on complex formation; acid-base, precipitation and redox reactions. Titrations in non-aqueous media and complexometry have also been used in pharmaceutical analysis. The number of new drugs is constantly growing. This requires new methods for controlling their quality. Modern pharmaceutical analysis must need the following requirements.

- 1. The analysis should take a minimal time.
- 2. The accuracy of the analysis should meet the demands of Pharmacopoeia.
- 3. The analysis should be economical.
- 4. The selected method should be precise and selective.

1.1 Chromatography

Chromatography (Chroma means 'color' and graphein means to 'write') is the collective term for a set of laboratory techniques for the separation of mixtures. It

Table 1.1 Different types of chromatographic techniques.

Sl. No | Basic principle involved **Type of Chromatography** Column chromatography 1. Paper chromatography Techniques by chromatographic bed shape Thin layer chromatography Gas chromatography 2 Techniques by physical state of mobile phase Liquid chromatography 3 Supercritical fluid chromatography Affinity chromatography Ion exchange chromatography 4 Techniques by separation mechanism Size exclusion chromatography Reversed phase chromatography Simulatedmoving-bed chromatography Pyrolysis gas chromatography 5 Special techniques Fast protein liquid chromatography Counter current chromatography Chiral chromatography

Chromatography may be preparative or analytical. The purpose of preparative chromatography is to separate the components of a mixture for further use (and is thus a form of purification). Analytical chromatography is done normally with smaller amounts of material and is for measuring the relative proportion of analytes in a mixture.

3. Drug Profile^[25-39] Meropenem

Meropenem is a broad-spectrum carbapenem antibiotic. It is active against Gram-positive and Gram-negative bacteria. Meropenem exerts its action by penetrating bacterial cells readily and interfering with the synthesis of vital cell wall components, which leads to cell death.

In August 2017, a combination antibacterial therapy under the market name vabomere was approved for treatment of adult patients with complicated urinary tract infections (cUTI). Vabomere consists of meropenem and <u>Vaborbactam</u> and is intravenously administered. The treatment aims to resolve infection-related symptoms and achieve negative urine culture, where the infections are proven or strongly suspected to be caused by susceptible bacteria.

Fig. 2.1: Meropenem structure.

Vaborbactam

Description: Vaborbactam has been used in trials studying the treatment of Bacterial Infections, Subjects With Normal Renal Function, and Subjects With Varying Degrees of Renal Insufficiency.

Structure

Fig.2.2: Vaborbactam.

5. MATERIALS AND METHODS

Materials

• Meropenem and Vaborbactam pure drugs (API) received from Aurobindo pharma ltd.

involves passing a mixture dissolved in a "mobile phase" through a stationary phase,^[2-4] which separates the analyte to be measured from other molecules in the mixture based on differential partitioning between the mobile and stationary phases. Differences in compounds partition coefficient results in differential retention on the stationary phase and thus changing the separation.

Different types of chromatographic techniques were summarized in

- Combination Meropenem and Vaborbactam Injection (**Vabomere**) Manufactured by: Facta Farmaceutici
- Distilled water, Acetonitrile, Phosphate buffer, Methanol, Potassium dihydrogen ortho phosphate buffer, Ortho-phosphoric acid. All the above chemicals and solvents are from Rankem

Instruments

- Electronics Balance-Denver
- p^H meter -BVK enterprises, India
- Ultrasonicator-BVK enterprises
- WATERS HPLC 2695 SYSTEM equipped with quaternary pumps, Photo Diode Array detector and Auto sampler integrated with Empower 2 Software.
- UV-VIS spectrophotometer PG Instruments T60 with special bandwidth of 2 mm and 10mm and matched quartz cells integrated with UV win 6 Software was used for measuring absorbances of Meropenem and Vaborbactam solutions.

Methods

Diluent: Based up on the solubility of the drugs, diluent was selected, Methanol and Water taken in the ratio of 50:50

Preparation of Standard stock solutions: Accurately weighed 25mg of Meropenem and 25mg of Vaborbactam and transferred to 25ml volumetric flask. And 3/4 th of diluents was added to these flask and sonicated for 10 minutes. Flask were made up with diluents and labeled as Standard stock solution. (1000µg/ml of Meropenem and 1000µg/ml of vaborbactam).

Preparation of Standard working solutions (100% solution): 1ml from each stock solution was pipetted out and taken into a 10ml volumetric flask and made up with diluent. ($100\mu g/ml$ Meropenem of and $100\mu g/ml$ of vaborbactam)

Preparation of Sample stock solutions: 1g of dry powder (for injection) was weighed and transferred to 500 ml volumetric flask, to this 5 ml of acetonitrile was added and sonicated. Volume was made upto 500 ml with diluents and filtered through 0.45 μ m or finer porosity membrane filter (1000 μ g/ml of Meropenem and 1000 μ g/ml of Vaborbactam)

Preparation of Sample working solutions (100% solution): 0.5ml of filtered sample stock solution was transferred to 10ml volumetric flask and made up with diluent. (100μ g/ml of Meropenem and 100μ g/ml of Vaborbactam).

Preparation of buffer

0.01N KH₂PO₄ Buffer: Accurately weighed 1.36gm of Potassium dihyrogen Ortho phosphate in a 1000ml of Volumetric flask add about 900ml of milli-Q water added and degas to sonicate and finally make up the

volume with water then PH adjusted to 5.0 with dil. Orthophosphoric acid solution.

Validation

System suitability parameters

The system suitability parameters were determined by preparing standard solutions of Meropenem (100ppm) and Vaborbactam (100ppm) and the solutions were injected six times and the parameters like peak tailing, resolution and USP plate count were determined.

The % RSD for the area of six standard injections results should not be more than 2%.

Specificity: Checking of the interference in the optimized method. We should not find interfering peaks in blank and placebo at retention times of these drugs in this method. So this method was said to be specific.

Precision

Preparation of Standard stock solutions: Accurately weighed 25mg of Meropenem and 25mg of Vaborbactam and transferred to 25ml volumetric flask. and 3/4 th of diluents was added to these flask and sonicated for 10 minutes. Flask were made up with diluents and labeled as Standard stock solution. (1000µg/ml of Meropenem and 1000µg/ml of vaborbactam).

Preparation of Standard working solutions (100% solution): 1ml from each stock solution was pipetted out and taken into a 10ml volumetric flask and made up with diluent. (100μ g/ml of Meropenem and 100μ g/ml of Vaborbactam).

Preparation of Sample stock solutions: 1g of dry powder (for injection) was weighed and transferred to 500 ml volumetric flask, to this 5 ml of acetonitrile was added and sonicated. Volume was made upto 500 ml with diluents and filtered through 0.45 μ m or finer porosity membrane filter (1000 μ g/ml of Meropenem and 1000 μ g/ml of Vaborbactam).

Preparation of Sample working solutions (100% solution): 0.5ml of filtered sample stock solution was transferred to 10ml volumetric flask and made up with diluent. (100μ g/ml of Meropenem and 100μ g/ml of Vaborbactam).

Linearity

Preparation of Standard stock solutions: Accurately weighed 25mg of Meropenem and 25mg of Vaborbactam and transferred to 50ml volumetric flask. and 3/4 th of diluents was added to these flask and sonicated for 10 minutes. Flask were made up with diluents and labeled as Standard stock solution. (1000µg/ml of Meropenem and 1000µg/ml of vaborbactam).

25% Standard solution: 0.25ml each from two standard stock solutions was pipetted out and made up to 10ml. (25µg/ml of Meropenem and 25µg/ml of Vaborbactam)

50% Standard solution: 0.5ml each from two standard stock solutions was pipetted out and made up to 10ml. (50µg/ml of Meropenem and 50µg/ml of Vaborbactam)

75% Standard solution: 0.75ml each from two standard stock solutions was pipetted out and made up to 10ml. (75µg/ml of Meropenem and 75µg/ml of Vaborbactam)

100% Standard solution: 1.0ml each from two standard stock solutions was pipetted out and made up to 10ml. $(100\mu g/ml \text{ of Meropenem and } 100\mu g/ml \text{ of Vaborbactam})$

125% Standard solution: 1.25ml each from two standard stock solutions was pipetted out and made up to 10ml. $(125\mu g/ml \text{ of Meropenem and } 125\mu g/ml \text{ of Vaborbactam})$

150% Standard solution: 1.5ml each from two standard stock solutions was pipettede out and made up to 10ml (150µg/ml of Meropenem and 150µg/ml of Vaborbactam)

Accuracy

Preparation of Standard stock solutions: Accurately weighed 25mg of Meropenem and 25mg of Vaborbactam and transferred to 50ml volumetric flask. and 3/4 th of diluents was added to these flask and sonicated for 10 minutes. Flask were made up with diluents and labeled as Standard stock solution. (1000µg/ml of Meropenem and 1000µg/ml of vaborbactam).

Preparation of 50% Spiked Solution: 0.5ml of sample stock solution was taken into a 10ml volumetric flask, to that 1.0ml from each standard stock solution was pipetted out, and made up to the mark with diluent.

Preparation of 100% Spiked Solution: 1.0ml of sample stock solution was taken into a 10ml volumetric flask, to that 1.0ml from each standard stock solution was pipetted out, and made up to the mark with diluent.

Preparation of 150% Spiked Solution: 1.5ml of sample stock solution was taken into a 10ml volumetric flask, to that 1.0ml from each standard stock solution was pipetted out, and made up to the mark with diluent.

Acceptance Criteria

The % Recovery for each level should be between 98.0 to 102.

Robustness: Small deliberate changes in method like Flow rate, mobile phase ratio, and temperature are made but there were no recognized change in the result and are within range as per ICH Guide lines.

Robustness conditions like Flow minus (0.9ml/min), Flow plus (1.1ml/min), mobile phase minus, mobile phase plus, temperature minus (25° C) and temperature plus(35° C) was maintained and samples were injected in duplicate manner. System suitability parameters were not much effected and all the parameters were passed. %RSD was within the limit.

LOD sample Preparation: 0.25ml each from two standard stock solutions was pipetted out and transferred to two separate 10ml volumetric flasks and made up with diluents. From the above solutions 0.1ml each of Meropenem and Vaborbactam solutions respectively were transferred to 10ml volumetric flasks and made up with the same diluents

LOQ sample Preparation: 0.25ml each from two standard stock solutions was pipetted out and transferred to two separate 10ml volumetric flask and made up with diluent. From the above solutions 0.3ml each of Meropenem and Vaborbactam solutions respectively were transferred to 10ml volumetric flasks and made up with the same diluent.

Degradation studies Oxidation

To 1 ml of stock solution of Meropenem and Vaborbactam, 1 ml of 20% hydrogen peroxide (H2O2) was added separately. The solutions were kept for 30 min at 60° c. For HPLC study, the resultant solution was diluted to obtain 100μ g/ml& 100μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Acid Degradation Studies

To 1 ml of stock s solution Meropenem and Vaborbactam, 1 ml of 2N Hydrochloric acid was added and refluxed for 30mins at 60° c. The resultant solution was diluted to obtain 100μ g/ml& 100μ g/ml solution and 10 μ l solutions were injected into the system and the chromatograms were recorded to assess the stability of sample.

Alkali Degradation Studies

To 1 ml of stock solution Meropenem and Vaborbactam, 1 ml of 2N sodium hydroxide was added and refluxed for 30mins at 60° c. The resultant solution was diluted to obtain 100μ g/ml& 100μ g/ml solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Dry Heat Degradation Studies

The standard drug solution was placed in oven at 105° C for 1 h to study dry heat degradation. For HPLC study, the resultant solution was diluted to 100μ g/ml $&100\mu$ g/ml solution and 10μ l were injected into the system and the chromatograms were recorded to assess the stability of the sample.

Photo Stability studies

The photochemical stability of the drug was also studied by exposing the 1000µg/ml&1000µg/ml solution

to UV Light by keeping the beaker in UV Chamber for 1days or 200 Watt hours/m² in photo stability chamber For HPLC study, the resultant solution was diluted to obtain 100μ g/ml $&100\mu$ g/ml solutions and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of sample.

Neutral Degradation Studies

Stress testing under neutral conditions was studied by refluxing the drug in water for 1hrs at a

RESULTS AND DISCUSSION

Determination of λ_{max} and Optimized wavelength

temperature of 60°. For HPLC study, the resultant solution was diluted to $100\mu g/ml\&100\mu g/ml$ solution and 10 μ l were injected into the system and the chromatograms were recorded to assess the stability of the sample.

Fig. 6.1: Individual UV spectra of Meropenem and Vaborbactam.

Fig. 6.2: Overlay UV spectra of Meropenem and Vaborbactam.

Optimized method Chromatographic conditions Mobile phase: 50% 0.01N KH₂PO₄:50% Methanol **Flow rate:** 0.8 ml/min **Column :** Agilent C18 (4.6 x 150mm, 5μm) **Detector wave length:** 260nm **Column temperature:** 30°C **Injection volume:** 10μL **Run time: 5**min **Diluent:** Water and Methanol in the ratio 50:50 **Results:** Both peaks have good resolution, tailing

Fig. 6.8: Optimized Chromatogram.

S no	Meropenem			Vaborbactam			
Inj	RT(min)	USP Plate Count	Tailing	RT(min)	USP Plate Count	Tailing	Resolution
1	2.109	3461	1.29	2.639	5476	1.29	3.5
2	2.111	3569	1.24	2.64	5727	1.27	3.6
3	2.114	3477	1.24	2.642	5583	1.29	3.6
4	2.115	3396	1.24	2.645	5319	1.27	3.6
5	2.119	3306	1.29	2.654	5422	1.26	3.6
6	2.122	3485	1.29	2.654	4771	1.31	3.5

Linearity

Table 6.2 Linearity table for Meropenem and Vaborbactam.

Meropenem		Vaborbactam	
Conc (µg/mL)	Peak area	Conc (µg/mL)	Peak area
0	0	0	0
25	224279	25	224981
50	439298	50	430695
75	657021	75	647414
100	900728	100	891907
125	1106176	125	1102212
150	1322957	150	1302772

Fig. 6.13: Calibration curve of Meropenem.

5.00

Fig. 6.14: Calibration curve of Vaborbactam.

Precision

System Precision

Table 6.3 System precision table of Meropenem and Vaborbactam.

S. No	Area of Meropenem	Area of Vaborbactam
1.	891526	890233
2.	900923	899278
3.	892902	894054
4.	892658	892473
5.	899923	895535
6.	881770	878965
Mean	893284	891756
S.D	6908.4	6965.4
%RSD	0.8	0.8

Repeatability

 Table 6.4 Repeatability table of Meropenem and Vaborbactam.

S. No	Area of Meropenem	Area of Vaborbactam
1.	892702	887557
2.	893419	889201
3.	893353	892464
4.	909064	904282
5.	898243	897765
6.	894669	890771
Mean	896908	893673
S.D	6278.0	6270.3
%RSD	0.7	0.7

Intermediate precision (Day_ Day Precision) Table 6.5: Intermediate precision table of Meropenem and Vaborbactam.

S. No	Area of Meropenem	Area of Vaborbactam
1.	809316	797098
2.	813755	792039
3.	809719	801354
4.	799339	797164
5.	818320	790217
6.	801625	791052
Mean	808679	794821
S.D	7172.1	4393.1
%RSD	0.9	0.6

Accuracy

 Table 6.6: Accuracy table of Meropenem.

% Level	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery	Mean %Recovery
	50	49.12	98.23	
50%	50	49.44	98.87	
	50	50.25	100.49	
	100	99.35	99.35	
100%	100	100.08	100.08	99.52%
	100	100.08	100.08	
150%	150	149.44	99.63	
	150	149.00	99.33	
	150	149.46	99.64	

Table 6.7 Accuracy table of Vaborbactam.

% Level	Amount Spiked (µg/mL)	Amount recovered (µg/mL)	% Recovery	Mean % Recovery
	50	49.72	99.45	
50%	50	50.26	100.52	
	50	50.34	100.68	
	100	98.62	98.62	
100%	100	98.59	98.59	100.04%
	100	98.55	98.55	
	150	152.12	101.42	
150%	150	151.99	101.33	
	150	151.81	101.21	

Sensitivity

Table 6.8 Sensitivity table of Meropenem and Vaborbactam.

Molecule	LOD	LOQ
Meropenem	0.07	0.21
Vaborbactam	0.07	0.21

Table 6.9: Robustness data for Meropenem and Vaborbactam.

S.no	Condition	%RSD of Meropenem	%RSD of Vaborbactam
1	Flow rate (-) 0.7ml/min	0.5	0.6
2	Flow rate (+) 0.9ml/min	0.6	0.9
3	Mobile phase (-) 45B:55A	0.6	0.4
4	Mobile phase (+) 55B:45A	0.5	0.1
5	Temperature (-) 25°C	0.4	0.2
6	Temperature (+) 35°C	0.3	0.4

Assay: The Medicines Company, bearing the label claim containing meropenem 1g + vaborbactam 1g (Vabomere (injection, sterile powder for reconstitution))Assay was

performed with the above formulation. Average % Assay for Meropenem and Vaborbactam obtained was 100.00 and 99.81% respectively.

Table 6.10: Assay Data of Meropenem.

S. no	Standard Area	Sample area	% Assay
1	891526	892702	99.54
2	900923	893419	99.62
3	892902	893353	99.61
4	892658	909064	101.36
5	899923	898243	100.15
6	881770	894669	99.75
Avg	893284	896908	100.00
Stdev	6908.4	6278.0	0.70
%RSD	0.8	0.7	0.7

Table 6.11: Assay Data of Vaborbactam.

S.no	Standard Area	Sample area	% Assay
1	890233	887557	99.13
2	899278	889201	99.31
3	894054	892464	99.68
4	892473	904282	101.00
5	895535	897765	100.27
6	878965	890771	99.49
Avg	892715	893673	99.81
Stdev	6965.4	6270.3	0.7
%RSD	0.8	0.7	0.7

6.8. Degradation data

Type of degradation	Meropenem			Vaborbactam		
	AREA	% Recovered	% Degraded	AREA	% Recovered	% Degraded
Acid	786747	87.72	12.28	784754	87.65	12.35
Base	843741	94.08	5.92	855121	95.51	4.49
Peroxide	846322	94.36	5.64	868169	96.97	3.03
Thermal	870857	97.10	2.90	883413	98.67	1.33
Uv	871110	97.13	2.87	881061	98.41	1.59
Water	891090	99.36	0.64	887046	99.07	0.93

Summary And Conclusion

Parameters		Meropenem	Vaborbactam	LIMIT	
Linearity Range (µg/ml)		25-150 µg/ml	25-150 µg/ml	R< 1	
Regressioncoefficient		0.999	0.999		
Slope(m)		8848	8748		
Intercept(c)		698.1	998.1		
Regression equation (Y=mx+c)		y = 8848.x + 698.1	y = 8748.x + 998.1		
Assay (% mean assay)		99.80%	99.90%	90-110%	
Specificity		Specific	Specific	No interference of any peak	
System precision %RSD		0.8	0.8	NMT 2.0%	
Method precision %RSD		0.7	0.7	NMT 2.0%	
Accuracy %recovery		99.72%	100.04%	98-102%	
LOD		0.07	0.21	NMT 3	
LOQ		0.07	0.21	NMT 10	
	FM	0.5	0.6		
Robustness	FP	0.6	0.9	%RSD NMT 2.0	
	MM	0.6	0.4		
	MP	0.5	0.1		
	ТМ	0.4	0.2		
	ТР	0.3	0.4	7	

CONCLUSION

A simple, Accurate, precise method was developed for the simultaneous estimation of the Meropenem and Vaborbactam in injection dosage form. Retention time of Meropenem and Vaborbactam were found to be 2.119 min and 2.654 min. %RSD of the Meropenem and Vaborbactam were and found to be 0.7 and 0.7 respectively. %Recovery was obtained as 99.52% and 100.04% for Meropenem and Vaborbactam respectively. LOD, LOQ values obtained from regression equations of Meropenem and Vaborbactam were 0.07, 0.21 µg/ml and 0.07, 0.21 µg/ml respectively. Regression equation of Meropenem is y = 8848.x + 698.1, and y = 8748.x + 698.1998.1 of Vaborbactam. Retention times were decreased and that run time was decreased, so the method developed was simple and economical that can be adopted in regular Quality control test in Industries.

REFERANCES

- 1. B.k Sharma, Instrumental methods of chemical analysis, Introduction to analytical chemistry, 23rd Edition Goel publication, Meerut, 2007.
- 2. Lindholm.J, Development and Validation of HPLC Method for Analytical and Preparative purpose. Acta Universitatis Upsaliensis, 2004; 13-14.
- Rashmin, An introduction to analytical Method Development for Pharmaceutical formulations. Indoglobal Journal of Pharmaceutical Sciences, 2012; 2(2): 191-196.
- 4. Malvia R, Bansal V, Pal O.P and Sharma P.K. A Review of High Performance Liquid Chromatography. Journal of Global Pharma technology, 2010
- Douglas A Skoog, F. James Holler, Timothy A. Niemen, Principles of Instrumental Analysis, 725-760.
- 6. Dr.S. Ravi Shankar, Text book of Pharmaceutical analysis, Fourth edition, 13.1-13.2.
- David G.Watson. Pharmaceutical Analysis, A text book for Pharmacy students and Pharmaceutical Chemists. Harcourt Publishers Limited; 2nd Ed., 221-232.
- 8. Remingtonn's The Sciences and Practise of Pharmacy, 20th Edition, 2000.
- Connors Ka. A Textbook of Pharmaceutical Analysis, Wiley intersciences Inc; Delhi, 3rd Ed, 1994; 373-421.
- 10. Gurdeep R. Chatwal, Sham K Anand, Instrumental Methods of Chemical Analysis, 2007; 2.566-2.638.
- 11. David G. Watson Pharmaceutical Analysis, A text book for pharmacy students and Pharmaceutical Chemists. Harcourt Publishers Limited; 2nd Ed., 267-311.
- 12. Nasal A, Siluk. D, and Kaliszan.R. Chromatographic Retention Parameters in Medicinal Chemistry and Pharmacology, Pubmed, 2003; 10(5): 381-426.
- Ashok Kumar, Lalith Kishore, navpreet Kaur, Anroop Nair. Method Development and Validation for Pharmaceutical Analysis. International Pharmaceutica Sciencia, 2012; 2(3).

- Kaushal.C, Srivatsava.B, A Process of Method Development: A Chromatographic Approach. J Chem Pharm Res, 2010; 2(2): 519-545.
- 15. Vibha Gupta, Ajay Deep Kumar Jain, N.S.Gill, Kapil, Development and Validation of HPLC method. International Research Journal of Pharmaeutical and Applied Sciences, 2012; 2(4).
- 16. Hokanson GC. A life cycle approach to the validation of analytical methods during Pharmaceutical Product Development. Part 1: The Initial Validation Process. Pharm Tech, 1994; 92-100.
- 17. Green JM. A Practicle guide to analytical method validation, Anal Chem, 1996; 305A-309A.
- ICH, Validation of analytical procedures: Text and Methodology. International Conference on Harmonization, IFPMA, Geneva, 1996.
- Nicolau, David P., et al., Pharmacokinetic and pharmacodynamic properties of meropenem. Clinical infectious diseases: an official publication of the Infectious Diseases Society of America, 2008; 47(1): S32-40. PMID: 18713048.
- IUPAC. Compendium of Chemical Terminology, 2nd edn. (The Gold Book). PAC69, 1137 (1997). Glossary of terms used in computational drug design (IUPAC Recommendations.
- 21. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edition, Jaypee brother's medical publishers (P) LTD, 254-255.
- 22. Indian Pharmacopoeia, Indian Pharmacopoeial Commission, Controller of Publication, Government of India, Ministry of health and Family Welfare, Ghaziabad, India, 2010; 2: 1657-1658.
- 23. British Pharmacopoeia, The British Pharmacopoeial Commission, the stationary office, UK, London, 2011; 1408-1409.
- 24. "http://www.drugbank.ca/drugs/DB00331.
- 25. Benoit Viollet, Bruno Guigas, Nieves Sanz Garcia, Jocelyne Leclerc, Marc Foretz, and Fabrizio Andreelli, cellular and molecular mechanisms of Meropenem: An overview, Clincal Science (London), 2012; 122(6): 253–270.
- 26. K. D. Tripathi, Essentials of Medical Pharmacology, 6th Edition, Jaypee brother's medical publishers (P) LTD, 254-255.
- 27. Indian Pharmacopoeia, Indian Pharmacopoeial Commission, Controller of Publication, Government of India, Ministry of health and Family Welfare, Ghaziabad, India, 2010; 2: 1657-1658.
- 28. British Pharmacopoeia, The British Pharmacopoeial Commission, the stationary office, UK, London, 2011; 1408-1409.
- 29. "http://www.drugbank.ca/drugs/DB00760.
- Cottagnoud, P., et al., 2002. Cellular and molecular aspects of drugs of the future: meropenem. Cellular and molecular life sciences: CMLS, 59(11): 1928-33. PMID: 12530523.
- 31. Kayser, F H., et al., Activity of meropenem, against gram-positive bacteria. The Journal of antimicrobial

chemotherapy, 1989; 24 Suppl A: 101-12. PMID: 2808202.

- 32. "http://www.drugbank.ca/drugs/DB12107.
- "International Nonproprietary Names for Pharmaceutical Substances (INN). Recommended International Nonproprietary Names: List 75" (PDF). World Health Organization, 161–2.
- 34. "https://www.drugs.com/sfx/Vaborbactam-side-effects.html".
- "http://www.rxlist.com/jardiance-drug/overdosagecontraindications.html" Terashima, H; Hama, K "Effects of a new aldose reductase inhibitor on various tissue in vitro". J Pharamacol Exp Ther., 1984; 229: 226–230.
- 36. Sreelakshmi. Ma. RP- HPLC Method for Simultaneous Estimation of Meropenem and Vaborbactam in Bulk Samples. International Journal of Medical Science and Innovative Research (IJMSIR) September- October, 2017; 361 – 367.
- 37. Mojgan Sabet. Activity of Simulated Human Dosage Regimens of Meropenem and Vaborbactam against Carbapenem-resistant *Enterobacteriaceae* in an In Vitro Hollow Fiber Model. Copyright © 2017 American Society for Microbiology. Accepted manuscript posted online13 November, 2017. doi:10.1128/AAC.01969-17.
- 38. Ramona khanum1. development and validation of a rp-hplc method for the detection of meropenem as a pure compound, in a pharmaceutical dosage form and post thermal induced degradation. International Journal of Pharmacy and Pharmaceutical Sciences. Received: 05 Jan 2014 Revised and Accepted, 24 Jan 2014.
- 39. Zalewski P, Development and validation of stabilityindicating HPLC method for simultaneous determination of meropenem and potassium clavulanate. Acta Pol Pharm, 2014 Mar-Apr; 71(2): 255-60.
- 40. Olga Lomovskaya#. Vaborbactam: Spectrum of Beta-Lactamase Inhibition and Impact of Resistance Mechanisms on Activity in Enterobacteriaceae American Society for Microbiology. Accepted manuscript posted online28 August 2017, doi:10.1128/AAC.01443-L.Venkateswara Rao, Reverse Phase HPLC and Visible Spectrophotometric Methods for the Determination of Meropenem in Pure and Pharmaceutical Dosage Form. International Journal of Pharm Tech Research, July-Sept 2012; 4(3): 957-962.
- Ping CHANG 1. Determination of Meropenem in Human Plasma by HPLC: Validation and its Application to Pharmacokinetic Study. Latin American Journal of Pharmacy. 870-4 (2014) Received: December 22, 2013 Revised version: March 22, 2014 Accepted: March 25, 2014.
- 42. GregoriCasals^a: Development and validation of a UHPLC diode array detector method for meropenem quantification in human plasma The Canadian

Society of Clinical Chemists. Published by Elsevier Inc., November 2014; 47(16–17): 223-227.

- 43. Guanyang LIN 1. Determination of Meropenem in Rabbit Plasma by LC–MS/MS. Latin American Journal of Pharmacy ,1895-1900 (2011) Regular Article Received: August 8, 2011 Revised version: November 2, 2011 Accepted: November 3, 2011.
- 44. Przemys£Aw Zalewski. development and validation of stability-indicating hplc method for simultaneous determination of meropenem and potassium clavulanate. Acta Poloniae Pharmaceutica ñ Drug Research, 2014; 71(2): 255ñ260.