ABSTRACT

Carissa Carandas mill L, commonly known as Damask rose, is known as Gole Mohammadi in Iran. It is one of the most important species of Apocynaceae family. The alcoholic extract of the Carissa Carandas flowers shows the significance anti microbial and anti oxidant activity in a concentration of 500µg/ml and 30 µg/ml respectively. The results were compared with standards like ofloxacin and ascorbic acid respectively.

KEYWORDS: Carissa Carandas, anti microbial activity, anti oxidant activity, DPPH activity.

INTRODUCTION

Carissa Carandas mill L, commonly known as Damask rose,[1] is known as Gole Mohammadi in Iran.[2] It is one of the most important species of Apocynaceae family. Rosaceae are well- known ornamental plants and have been referred to as the king of flowers.[3,4] At present time, over 200 rose species and more than 18000 cultivars form of the plant have been identified.[5] Apart from the use of Carissa Carandas ornamental plants in parks, gardens, and houses, they are principally cultivated for using in perfume, medicine and food industry.[6] However, Carissa Carandas is mainly known for its perfuming effects.[7] The rose water were scattered at weddings to ensure a happy marriage and are symbol of love and purity and are also used to aid meditation and prayer. There is a strong bond between Iranians and this plant. Its popularity is not only because of the medicinal effects but also is due to holy beliefs about it. People call this plant Flower of Prophet Mohammed (Gole mohammadi), because they believe its nice aroma reminds them of prophet Mohammad.[8]

At the present time, this plant is cultivated in Iran (especially in Kashan) for preparing rose water and essential oil.[9,10] Because of the low oil content in Carissa Carandas and the lack of natural and synthetic substitutes, essential rose oil of this plant is one of the most expensive ones in the world markets.[11] The Carissa Carandas has also been used for medicinal purposes.[12] Various products and isolated constituents from flowers, petals and hips (seed-pot) of this plant have been studied in a variety of in vivo and in vitro studies. However, there are not any reviews to collect pharmacological effects of R. damascena the present time. Therefore, in this review we collect and discuss important pharmacological effects of Carissa Carandas that recently have been published in numerous studies.

MATERIALS AND METHODS

Preparation of plant extract

The fresh petals of flower Carissa Carandas were shade dried. The dried petals were grinded to get coarse powder. 250 gm of coarse powder was subjected to cold maceration process using ethanol (70:30) as solvent. The extraction was continued for 7 days at room temperature with occasional shaking. Then the extract was filtered, collected and concentrated at 70°C on a heating mantle until a softy mass obtained. It was then thoroughly air dried to remove all the traces of solvent and then was subjected to freeze drying. The obtained plant extract was preserved in cold condition i.e. below 0°C till the end of treatment period.

4.3. Preliminary Phytochemical Screening.[13,14,15,16]

Standard qualitative screening test of the extract was carried out for various plant constituents. The crude extract was screened for the presence or absence of secondary metabolites using standard procedures (Khandelwal, 2005).
Test for Tannins
1. A small portion of extract was treated with 5% ferric chloride solution. Appearance of green to blue color was taken as a positive test for tannins.
2. Small portion of extract was treated with lead acetate. Appearance of creamy precipitate was considered as a positive test for tannins.

Test for Alkaloids
1. **Mayer’s Test**: The Extract to be tested is treated with few drops of dilute 2N HCl and 0.5 ml Mayer’s reagent. White precipitate was obtained which confirm the presence of alkaloids.
2. **Wagner’s Test**: The extract is treated with few drops of 2N HCl and 0.5 ml Wagner’s reagent. Brown flocculent precipitate was obtained which confirm the presence of alkaloids.
3. **Hager’s Test**: The extract is treated with few drops of dilute 2N HCl and 0.5 ml Hager’s reagent. Yellow colored precipitate was obtained which confirms the presence of alkaloids.

Test for Steroids
1. **Salkowski reaction**: To 2ml of extract, add 2ml of chloroform and 2ml conc. H2SO4. Shake well. Chloroform layer appears red and acid layer shows greenish yellow fluorescence.
2. **Liebermann-Burchard reaction**: Mix 2 ml extract with chloroform. Add 1-2ml acetic anhydride and 2 drops of conc. H2SO4 from the side of test tube.

Tests for Glycosides
1. **Borntrager’s test**: About 50mg of extract was hydrolysed with 2ml of concentrated HCl for 2hrs on water bath and filtered. To 2ml of filtrate hydrolysate, 3ml of CHCl3 was added and shaken. CHCl3 layer was separated and 10% NH3 solution was added. Formation of pink color indicates the presence of anthraquinone glycosides.
2. **Baljet’s test**: The alcoholic or aqueous extract test solution is treated with sodium picrate. Appearance of yellow to orange colour indicates the presence of glycosides.
3. **Keller-Kiliani test**: About 2ml of test solution is treated with few drops of ferric chloride solution and mixed and then sulphuric acid containing ferric chloride solution is added, it forms two layers. Appearance of lower layer in reddish brown and upper layer in bluish green indicates the presence of glycosides.

Test for Saponins
Foam’s test: A small amount of dry extract was boiled with water and allowed to cool. It was then shaken vigorously for a minute. The formation of persistent honey comb like froth was considered as a positive test for saponins.

Test for Sugars
1. **Molisch’s test**: It was performed for the presence of carbohydrates. 1 ml of 10% alcoholic solution of α-napthol was added to the extract and mixed. Then 1ml of concentrated sulphuric acid was carefully poured along the sides of the test tube violet ring formed at the junction which is considered positive test for carbohydrates.
2. **Fehling’s test**: 5ml of solution of extract was heated with equal volumes of Fehling’s solution A & B. Transition of color from blue through green to reddish orange confirms the presence of reducing sugars.
3. **Benedict’s test**: 5 ml of solution of the extract was heated with 5 ml of Benedict’s reagent. A green, yellow or orange red precipitate was considered as a positive test for reducing sugars.

Test for Proteins
1. **Biuret test**: A small portion of extract was treated with Biuret reagent.

Pharmacological evolution
Anti microbial evolution 28
Test Organisms Bacterial strains were obtained from National Chemical Laboratories (NCL), Pune and Microbial Type Culture Collection (MTCC), Chandigarh. The strains used for the present study were *Staphylococcus aureus* (NCIM 2079), *Bacillus subtilis* (NCIM 2063), *Escherichia coli* (NCIM 2931), *Proteus vulgaris* (NCIM 2027).

Procedure
The antimicrobial activity of the extract was assessed by disc diffusion method. Nutrient agar medium was prepared and sterilized by an autoclave. In an aseptic room, they were poured into a petridishes to a uniform depth of 4 mm and then allowed to solidify at room temperature. After solidification, the test organisms, *Escherichia coli*, *Bacillus subtilis*, *Staphylococcus aureus*, and *Proteus vulgaris* were spread over the media with the help of a sterile swab socked in bacterium and is used for antibacterial study. The ethanolic extract residues were dissolved in dimethyl sulfoxide (DMSO) to produce a concentration of 100, 250, 500 µg/disc and used for the study. Ofloxacin 5 µg/disc was used as the standard. Then the sterile filter paper discs (6mm) having a capacity to hold 10 µl of extracts were immersed in definite concentration of plant extracts and placed over the solidified agar in such a way that there is no overlapping of the zone of inhibition. Plates were kept at room temperature for half an hour for the diffusion of the sample into the agar media. The organism inoculated petridishes were incubated at 37 °C for 24 hours. After the incubation period is over, the zone of inhibition
produced by the samples and standard were measured. All tests were performed in triplicate.

Analgesic and Anti inflammatory activity

Analgesic activity

Tail-Fick Test

The basal reaction time of each mouse was determined using tail-withdrawal response when one-third of the tail was immersed in water bath at 51°C.[11] The cutoff time for immersion was 180 s. The reaction time was evaluated 30, 60, 90, 120 and 240 min after oral administration of extracts, distilled water or acetylsalicylic acid.

Formalin Test

The method used in our study was similar to that described previously.[12] Twenty microliter of 5% formalin was injected subcutaneously into the right hind paw of mice. The time (in seconds) spent in licking and biting responses of the injected paw was taken as an indicator of pain response. Responses were measured for 5 min after formalin injection (early phase) and 20–30 min after formalin injection (late phase). Swertia Chirata root M extracts (0.5 and 1.0 g/kg, i.p.) were administered 60 min before formalin injection. Indomethacin (10 mg/kg, i.p.) was administered 30 min before formalin injection. Control group received the same volume of saline by oral administration.

Anti-inflammatory activity

Carrageenan induced hind paw edema in rats Paw edema was produced in rats by carrageenan following the methods of Winter et al. (1962) respectively.[13] Male rats eighing 100–120 g were divided into groups of six animals. A volume of 0.05 ml of 1% carrageenan in normal saline solution (NSS) in 0.2M carbonate buffer was injected intradermally into the plantar side of the right hind paw of the rat. Test drugs and vehicle were given 1 h prior to carrageenan injection. Paw volumes were measured using a plethysmometer (model 7150, Ugo Basile, Italy) before as well as 1, 3 and 5 h after carrageenan, injection. Results obtained were compared with those obtained from there

Antioxidant activity by DPPH method[20]

Antioxidant behaviour of the extracted compound was measured in vitro by the inhibition of generated stable 2,2-diphenyl-1-picrylhydrazyl (DPPH) free radical. Methods vary greatly as to the generated radical, the reproducibility of the generation process, and the end point that is used for the determination. The DPPH solution was prepared by dissolving accurately weighed 22 mg of DPPH in 100 ml of ethanol. From this stock solution, 18 ml was diluted to 100 ml with ethanol to obtain 100 μM DPPH solutions. The sample solution was prepared by accurately weighed 2.1 mg of each of the compounds and dissolved in 1 ml of freshly distilled DMSO separately to obtain solutions of 2.1 mg/ml concentration and the standard solution of was prepared by accurately weighed 10.5 mg of α-Tocopherol and dissolved in 1 ml of freshly distilled DMSO to get 10.5 mg/ml concentration.

A different concentration of extract was prepared by the addition of ethanolic solution of DPPH radical. The reaction mixture was vortexed thoroughly and left in the dark at room temperature for 30 min. The absorbance of the mixture was measured spectrophotometrically at 517 nm against the corresponding blank solution. The final concentration of the samples and standard α-Tocopherol solutions used is 100 μg/ml. The percentage scavenging DPPH radical inhibitions were calculated by using the following formula:

\[
\text{DPPH radical scavenging activity (\%) = } \frac{(\text{Abs control} - \text{Abs sample})}{\text{Abs control}} \times 100
\]

Where, Abs control was the absorbance of DPPH radical and ethanol, Abs sample was the absorbance of DPPH radical and sample/standard.

The scavenging activity was expressed in terms of IC50, the concentration of the samples required to give a 50% reduction in the intensity of the signal of the DPPH radical. The results were done at least in triplicate.

RESULTS

<table>
<thead>
<tr>
<th>S. No</th>
<th>Name of the Test</th>
<th>Result</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Flavonoids</td>
<td>++</td>
</tr>
<tr>
<td>2.</td>
<td>Phenols</td>
<td>++</td>
</tr>
<tr>
<td>3.</td>
<td>Alkaloids</td>
<td>++</td>
</tr>
<tr>
<td>4.</td>
<td>Saponins</td>
<td>++</td>
</tr>
<tr>
<td>5.</td>
<td>Carbohydrates</td>
<td>++</td>
</tr>
<tr>
<td>6.</td>
<td>Proteins & amino acids</td>
<td>++</td>
</tr>
<tr>
<td>7.</td>
<td>Tannins</td>
<td>++</td>
</tr>
<tr>
<td>8.</td>
<td>Cardiac glycosides</td>
<td>++</td>
</tr>
</tbody>
</table>

Table 1: Results of Preliminary Phytochemical Screening of ERD.

<table>
<thead>
<tr>
<th>Name of the organisms</th>
<th>Staphylococcus aureus</th>
<th>Bacillus subtilis</th>
<th>Escherichia coli</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zone of inhibition in mm</td>
<td>100μg/ml</td>
<td>250mg/ml</td>
<td>500μg/ml</td>
</tr>
<tr>
<td>Alcoholic extract of Carissa Carand</td>
<td>10</td>
<td>14</td>
<td>18</td>
</tr>
<tr>
<td>Ofloxacin</td>
<td>250mg/ml</td>
<td>500μg/ml</td>
<td>100μg/ml</td>
</tr>
</tbody>
</table>

Table 2: Anti Microbial Evolution of Compounds.
Table 2: Anti oxidant activity of alcoholic extract of *Carissa Carandas*.

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Ascorbic acid (Abs)</th>
<th>Alcoholic extract of Carissa Carandas (Abs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.2380</td>
<td>0.244</td>
</tr>
<tr>
<td>10</td>
<td>0.1719</td>
<td>0.2415</td>
</tr>
<tr>
<td>15</td>
<td>0.0469</td>
<td>0.218</td>
</tr>
<tr>
<td>20</td>
<td>0.0415</td>
<td>0.1636</td>
</tr>
<tr>
<td>25</td>
<td>0.0410</td>
<td>0.1427</td>
</tr>
<tr>
<td>30</td>
<td>0.0390</td>
<td>0.0979</td>
</tr>
<tr>
<td>Control</td>
<td></td>
<td>0.2444</td>
</tr>
</tbody>
</table>

Table 3: % Inhibition of alcoholic extract of *Carissa Carandas* with ascorbic acid.

<table>
<thead>
<tr>
<th>Concentration (μg/ml)</th>
<th>Ascorbic acid (% Inhibition)</th>
<th>Alcoholic extract of Carissa Carandas (% Inhibition)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>2.618658</td>
<td>0.163666</td>
</tr>
<tr>
<td>10</td>
<td>29.66448</td>
<td>1.186579</td>
</tr>
<tr>
<td>15</td>
<td>80.81015</td>
<td>10.80196</td>
</tr>
<tr>
<td>20</td>
<td>83.01964</td>
<td>33.06056</td>
</tr>
<tr>
<td>25</td>
<td>83.22422</td>
<td>41.61211</td>
</tr>
<tr>
<td>30</td>
<td>84.04255</td>
<td>59.94272</td>
</tr>
</tbody>
</table>

Graph-1: Concentration Vs Absorbance.

Graph-2: concentrations Vs % Inhibition.
DISCUSSION

The present results reveals that the alcoholic extract shows the activity less than the standard. The extract was diluted with concentration of 100 µg/ml, 250µg/ml, 500µg/ml. In that the extract with concentration of 500µg/ml shows the significance activity than the remaining concentrations. The Alcoholic extract of *Carissa Carandas* tested for antioxidant activity by using DPPH Assay method. Here the results were compared with the standard Ascorbic acid. The result reveals that the extract shows results less than the standard. The concentration of the extract was taken in to 5-30 µg/ml. The % of inhibition shows that the up to 30µg/ml. The % inhibition is therefore it shows more activity than compare with other concentrations.

CONCLUSION

The outcomes of the present study indicated that the alcoholic extract of the *Carissa Carandas* flowers shows the significance anti microbial and anti oxidant activity in a concentration of 500µg/ml and 30 µg/ml respectively. The results were compared with standards like ofloxacin and ascorbic acid respectively.

REFERENCES

