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INTRODUCTION 
 

The rising prevalence of type 2 diabetes mellitus and the 

intolerable overwhelming burden of malaria impact 
negatively on healthspan and lifespan in Sub-Saharan 

Africa (SSA)which account for 90% of all global deaths 

due to malaria.[I] Report by WHO notes that diabetes 

prevalence has risen faster in low- and middle-income 

countries than in high-income countries and now 

accounts for about 8.6% of all deaths in adults.[2,3] 

Current prevalence in Nigeria may be 8%-10%, far 

above the <1% in 1960.[4,5] High glucose levels and type 

2 DM has been noted to increase mosquito-induced 

malaria transmission and the risk of malaria 

infection.[6,7,8] At the same time, malaria-induced 
oxidative stress may attenuate the insulin signalling 

pathway and upregulate diabetes risk.[9,10] The emerging 

epidemic of type 2 diabetes and the endemic malaria 

have been referred to as the double burden of Africa,[3] 

who noted that the malaria burden may now be shifting 

to the older age-groups. The probable import of this 

seeming spectre of a reciprocal association between 

malaria and type 2 diabetes mellitus is that attempts at 

prevention of malaria and of malaria resistance to 

chemotherapeutic agents must go pari passu or in 

tandem with efforts at prevention and treatment of type 2 
diabetes. 

 

Role of immunity in malaria 

Non-specific and the specific immunity response to 

malaria are the most important contributors to parasite 

clearance from peripheral blood.[11,12] In endemic areas, 

immunity enhances therapeutic responses to malaria, 

helping to clear drug-resistant asexual parasites and 

gametocytes.[13] 

 

Acute and chronic malaria drives T cells (CD4+T cells 

and CD8+T cells) to exhaustion via the Treg induction of 
the inhibitory proteins cytotoxic T-lymphocyte antigen-4 

(CTLA-4), programmed cell death ligand-I (PD-I) and 

lymphocyte activation gene-3 (LAG-3).
[14]

 The apparent 

failure of vaccine application in malaria may be most 

likely due to this immune exhaustion. This scenario may 

be compounded by the reported glycosylation of the 

immune cells in diabetes leading to their exhaustion and 
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ABSTRACT 
 

Malaria-induced attenuation of the insulin signalling pathway may be important in the aetiology of T2DM, while 

T2DM has been linked with increased malaria risk. AMPK activators, of which metformin, artesunate and 

esomeprazole are examples, down-regulate malaria-induced inhibition of AMPK, upregulate host immunity and 

may inhibit the spread of drug resistance in malaria. They also attenuate all stages of malaria parasite life-cycle. 

The long clinical duration of action of esomeprazole and the accumulation of metformin in erythrocytes may acquit 

them satisfactorily as combinatorial agents with artesunate which has a short duration of action. In the present 

report, the effect of the combination of metformin (500 mg daily with no interruption), esomeprazole (10 mg daily; 

intermittent) and artesunate (12.5 mg daily; intermittent) low-dose (MEALD) combination was compared to that of 
metformin alone in the attenuation of selected metabolic syndrome criteria in adult men. Also, the differential 

effects of the drug combination and metformin alone on parasite clearance and fever recrudescence were compared 

in adults. Results show that the MEALD combination was more significantly effective (P < 0.05) in reducing 

glucose levels and other selected metabolic syndrome criteria and in effecting parasite clearance and preventing 

parasite recrudescence over 18- month period than the metformin alone. Present report highlights that the MEALD 

combination deserves further study in a larger sample size. This would define its role in addressing both malaria 

drug resistance and the diabetes-malaria connection. 
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desensitization.[15] Combined blockade of PD-I, CTLA4 

and LAG3 increases numbers of CD4+TFH and germinal 

centre B cells along with higher antibody titres to control 

blood- stage parasites.[14,16,17,18] 

 

Chemotherapy in malaria 

i. Metformin 

The accumulation of the anti-diabetic metformin in 

erythrocytes and an attendant elimination half-life of 

18.5 to 31.5 hours makes it a possible suitable partner 

drug with artesunate. Metformin has been shown to 

reduce Plasmodium falciparum prevalence and to exhibit 

synergistic effects with atovaquone.[7,19] Very recently, it 

has been reported to decrease the expression of CTLA-4, 

PD-I and LAG-3. Metformin thus promotes CD4+ T cell 

function, inhibits granulocytic myeloid suppressor cells, 

increases secretion of protective antibodies and clears 

blood-stage malaria.[20,21,22,23] There is enhanced half-life 
of ring- stage sporozoites and an upregulated unfolded 

protein response (increased proteasome activity) in the 

emerging K13-associated artesunate resistance.[24] Non-

toxic proteasome inhibitors have been credited as able to 

prevent malaria parasite resistance including K13 

mutation-associated resistance, and to synergise with 

artesunate against all stages of sensitive and resistant 

strains of Plasmodium falciparum.[25] The AMPK 

activator, metformin, also inhibits plasmodial 

proteasome and this may explain its attenuation of 

survival of blood-, liver- and transmission- stages of the 
malaria parasite.[26,27,28,29,30,31] Additionally AMPK 

activators attenuate host myosin I heavy chain kinase- 

(MIHCK-) or P-21 activated protein kinase- (PAKI-) 

mitogen-activated protein kinase kinase I- (MEKI-) 

signalling pathway important in survival, proliferation 

and infection of malaria parasites.[32,33,34,35] Furthermore, 

AMPK activators upregulate the tumor suppressor 

protein, p53 transcription factor and attenuate liver-stage 

parasitaemia.[36] AMPK activators also inhibit HIF-alpha, 

enhance autophagy and B-oxidation of fatty acids 

necessary for attenuation of liver-stage 

infections.[37,38,39,40] Examples of other safe AMPK 
activators or PAKI blockers are curcumin, resveratrol 

and the King of Bitters (androgropholide) which are used 

for malaria, type 2 diabetes mellitus, bacterial infections, 

cancers and neurodegenerative diseases.[32,41] 

 

ii. Esomeprazole 

Although the half-life of esomeprazole is 51.0 minutes 

(0.85 hours), its clinical duration of action is 24-72 

hours.[42] Esomeprazole’s covalent binding or its 

sulfenamide metabolite to a P. falciparum H+ - ATPase 

may prolong its antimalarial effect, making it another 
suitable partner drug with artesunate. Similar to 

omeprazole, its S-enantiomer, esomeprazole has been 

noted in several experimental paradigms to exhibit liver- 

and blood-stage anti-malarial activity against ring-stage 

trophozoites, early trophozoites, mature trophozoites and 

schizonts.[43,44,45,46] It suppresses chloroquine resistance, 

inhibits multi-drug resistance proteins and may exhibit 

effects on Plasmodium falciparum’s N+ -ATPase pfATP4 

with probable similar potency to the spiroindolones. Its 

combination therapy with artesunate exhibits additive 

effects and prevents/reverses malaria drug resistance. 

 

Esomeprazole, an AMPK activator, may increase insulin 

release via gastrin and synergise with GLP-1 receptor 
agonists.[47,48] 

 

iii. Artesunate 

The elimination half-life of artesunate is 0.36-1.2 hours, 

while that of its metabolite dihydroartemisinin is 0.5-1.5 

hours.[49] Artesunate rapidly kills ring-form trophozoites, 

preventing their further development to mature 

trophozoites which cytoadhere, sequestrate and then 

evade the immune mechanisms. The actions of the spleen 

in pitting drug-impacted parasites, mechanical filtration 

and antibody production complement the actions of 

artesunate. Delayed parasite clearance at Day 3 (72 
hours) of initiating therapy or early treatment failure is a 

measure of artesunate resistance since the early 

parasitological response in combination therapies is 

determined largely by the artemisinin component. To 

prevent recrudescence, the malaria parasites that remain 

after exposure to the artemisinin component for two 48-

hr asexual cycles of Plasmodium falciparum must be 

cleared by the slowly eliminated drug in partnership.[11,12] 

Extended use of the AMPK activator and proteasome 

inhibitor, artesunate, has been recommended for K13-

associated malaria parasite resistance.[25] 
 

Artesunate also enhances the insulin signalling pathway 

and may also enhance insulin transport across the blood-

brain –barrier via endothelial nitric oxide.[50,51] It 

enhances brown adipose tissue (BAT) function and 

increases insulin release through augmenting or 

enhancing the amplifying pathways of insulin secretion 

mediated by eNOS, GABA-A agonists and preventing 

the DNA Damage Response-induced pancreatic β-cell 

apoptosis.[52,53,54,55,56] 

 

Drug resistance in malaria 
Presently, parasite resistance to antimalarial medicines 

has been documented in 3 of the 5 malaria species 

known to affect humans: P. falciparum, 

P. vivax and P. malariae. Anti-malarial resistance is 

defined as the ability of a parasite strain to survive and/or 

multiply despite the administration and absorption of a 

drug given in doses equal to or higher than those usually 

recommended but within tolerance of the subject (WHO). 

Artemisinin resistance is also defined as delayed parasite 

clearance following treatment with an artesunate 

monotherapy, or after treatment with an artemisinin-
based combination therapy (ACT). The inclusion of a 

day 3 parasite count in routine studies provides a method 

for ruling out artemisinin resistance with a defined 

precision.[11,57] Parasitaemia at days 28 and 42 may be 

due to partner drug resistance/recrudescence or new 

infections and distinction is made by genotyping or PCR. 

Cure rates for ACT should not be less than 95%. 

Treatment failure is the inability to clear parasites from a 
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patient’s blood or to prevent their recrudescence after the 

administration of an antimalarial. Many factors can 

contribute to treatment failure, including incorrect 

dosage, poor patient compliance, poor drug quality, and 

drug interactions and resistance. Most of these factors are 

addressed by therapeutic efficacy studies (TES). 

 

Drug resistance imperils malaria eradication efforts 

The steady appearance of Plasmodium falciparum 

resistance to many antimalarial medicines over the past 

several decades has since led malaria endemic countries 

to adopt artemisinin-based combination therapies where 

the half-life of the efficacious partner drug is not less 

than 24 hours (ACTs).[12] There are reports of probable 

and verified emergence of resistance to ACTs.[58,59] 

Protecting the efficacy of ACTs as the current first-line 

treatment for P. falciparum malaria is among the top 

global public health priorities. Multi-drug resistance 
(MDR) requires resistance to more than 2 operational 

antimalarial compounds of different chemical classes. 

 

Factors favouring the emergence of drug resistance 

include monotherapy, strong drug pressure, exposure to 

suboptimal drug concentrations especially for drugs with 

long half-lives and fake drugs. Sulfadoxine-

pyrimethamine elevate gametocytaemia and may favour 

transmission.[60] 

 

Known resistance genes encoding for transporter 
proteins are pfCRT, pfMDRI (chloroquine resistance, 

incomplete cross-resistance to amodiaquine and inverse 

correlation between chloroquine and lumenfantrine 

resistance);pfCRT, pfMDRI; pfNHEI (quinine resistance); pf 

plasmepsin (aspartic protease) 2 and 3 amplification, 

pfCRT (resistance to piperaquine); pfMDRI amplification 

(mefloquine); SNPs in cytochrome bci complex 

(atovaquone resistance); pfDHPS, pfDHFR (quick emergence 

of resistance to antifolates); pfMDRI, mutation in the Ca2+-

ATPase pfATP6, the Na+ - ATPase pfATP4 for Na+ 

regulation in the parasite (artemisinins and 

spiroindolones resistance); mutation in Kelch-13-
propeller region (primary factor in artemisinins 

resistance). K13-associated resistance has not been 

reported from Africa.[61,62,63] An association between 

pfCRT, pfMDRI; pfDHFR and pfDHPS genotypes/haplotypes 

has been reported.[64] 

 

THE AIM OF THE STUDY 
 

The sheer enormity of the malaria and type 2 diabetes 

burden in adults compels the need for effective drug or 

drug combinations as preventive. Present study was 
spurred by the finding that patient- volunteers on 500-

1000 mg of metformin (Glucophage) for prevention of 

type 2 diabetes since 2013 subsequently had decreased 

incidence of malaria fever. The aim of this work was to 

compare the effects of low-dose metformin, 

esomeprazole and intermittent artesunate low-dose 

(MEALD) combination versus low-dose metformin 

alone on the prevention of malaria and selected 

metabolic syndrome criteria in adults. 

METHODS 
 

This prospective study was done at Department of 

Pharmacology, AAU, Ekpoma and Oseghale Oriaifo 

Medical Centre, Ekpoma. Patients’s informed consent 

was obtained in writing and study was approved by the 

Ethical Committee of AAU’s College of Medicine, 
Ekpoma and of Oseghale Oriaifo Medical Centre, 

Ekpoma. 12 adults of either sex participated in the study 

on the effects of metformin (500 mg daily) –artesunate 

(12.5 mg daily; intermittent)-esomeprazole (10 mg daily; 

intermittent) low-dose (MEALD) combination and 

calorie restriction on malaria and metabolic syndrome 

criteria. The combination was given for 3 months with a 

break of 3 months with only the metformin administered 

with no interruption. This intermittent administration 

prevented possible neurotoxic effects of the artesunate + 

esomeprazole combination; which may include light-
headedness and swaying movements. The effects were 

compared to a similar number of volunteers who took 

low-dose metformin with calorie restriction alone; and to 

a third group that were on placebo with ad libitum 

feeding. Patients with early type 2 diabetes were 

included; but these continued with 1000 mg metformin 

daily. Volunteers were free of parasitaemia and fever 

before start of study. Before the start of the study, all 

participants were screened for malaria parasitaemia by 

Giemsa staining of thick (parasite density and species 

identification) and thin (definitive parasite species 

identification) blood smears. Positive cases were 
appropriately treated and there was satisfactory response 

to artesunate 4 mg/kg IM daily for 3 days + 

esomeprazole 40 mg daily for 3 days + metformin 750 

mg daily for 3 days. On Day 3, less than 1.5% of patients 

were parasitaemic indicating no resistance to artesunate. 

By Days 28 and 42, less than 0.5% of patients were 

parasitaemic indicating no resistance to the partner drugs 

of esomeprazole and metformin (WHO: Status report on 

artemisinin and ACT resistance. 2015). 

 

Exclusion criteria 
Volunteers with heart failure, sever kidney and liver 

disease were excluded. Patients with chronic type 2 

diabetes were also excluded. 

 

Statistical analysis 

Paired Student’s t-test was used and one-way Analysis of 

Variance (ANOVA) applied to compare only two 

samples (t-test) or more than two samples (one-way 

ANOVA) followed by Duncan Multiple Range test 

(DMR) or the Tukey-Kramer Multiple Comparison Test 

as post-hoc tests. Data are presented as mean ± standard 
error of mean (S. E. M.); number of subjects used for 

each experiment (n) = 12). The difference was 

considered to be significant at P < 0.05 
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RESULTS 
 

Table I: Effect of Metformin, esomeprazole and artesunate low-dose (MEALD) combination on incidence of 

malaria parasitaemia, fever and selected metabolic syndrome criteria. 
 

 Control Metformin MEALD 

 Mouth 6 12 18 6 12 18 6 12 18 

1. Incidence of fever 1.20+1.6 2.60+0.5 4.23+1.8 0.50+2.1 1.10+3.2 1.10+5.1 0.4+1.2 0.2+1.6 0.50+0.80 

2. 
Incidence of malaria 
Parasitaemia 

0.52+3.6 1.80+2.5 4.50+2.2 0.95+1.5 0.80+1.7 2.30+3.2 0.40+1.7 0 0 

3. BMI (m/kg2) 26.0+1.9 27.2+2.2 31.6+5.6 24.0+2.1 23.0+1.6 23.2+2.2 24.0+2.1 22.1+1.8 22.0+2.3 

4. 
Glucose Level 
(mg/dl) 

118.2+3.4 115.2+2.5 130.5+2.7 112.3+1.5 102.9+2.4 100.5+3.8 88.3+1.2 80.7+2.1 78.9+3.2 

5. Uric Acid (mg/dl) 8.80+0.6 8.90+1.3 9.85+1.6 7.50+1.9 7.30+2.0 7.10+2.0 6.80+0.6 6.40+0.9 5.75+1.1 

6. 
Respiratory tract 

infection 
0.5+1.3 1.2+1.9 2.1+2.5 0.4+0.7 1.2+0.8 1.5+1.1 0.3+0.8 0 0 

7. 
Walking Distance 
(m) 

480.6+5.7 460.3+6.2 450.4+8.9 482.5+4.2 500.3+3.6 530.9+8.9 601.9+4.6 606.6+5.2 608.6+4.8 

8. 
Number of Arthitic 
Pain exacerbations 

2.4+2.0 5.6+3.1 6.6+5.1 1.7+2.1 2.5+3.6 2.3+2.9 0.9+2.7 0.5+2.8 0.5+3.9 

 

Table I: The intermittent MEALD combination most 

significantly (P < 0.05) decreased the incidence of fever, 

malaria parasitaemia and the metabolic syndrome criteria 

of BMI, glucose and uric acid levels. It also most 

significantly increased the walking distance before 

fatigue and decreased the number of arthritic pain 

exacerbations. 

 

3 volunteers withdrew from the study due to probable 

side-effects of dizziness and mild movement disorder. 
Present results (Table I) show that patients on the 

MEALD combination/polypill administration had 

significantly (P < 0.05) greater reductions over the low-

dose metformin on incidence of fever and malaria 

parasitaemia over a 18-month period. They also had 

significantly greater reduction in the selected metabolic 

syndrome criteria of raised glucose, uric acid, BMI 

levels, exacerbations of arthritic bone pains and early 

fatigue on exertion. The MEALD combination also most 

significantly decreased the Blood Pressure (not shown). 

There was reduced incidence of respiratory tract 
infections, glaucoma and vision defects; and impulsivity-

related accidents at work. All these indices are known to 

be possible metabolic syndrome criteria. 

 

DISCUSSION 
 

The number of under-5 children dying from malaria has 

halved since 2000 due to greater political commitment 

and funding to prevent and treat the disease (WHO: 

World Malaria Report. 2013). In spite of the above, 

malaria and malaria-associated infections are reported to 

still exert a significant toll on well-being and economic 
output of citizens of Sub-Saharan Africa. For example, 

investigators have noted that Plasmodium falciparum-

associated malaria causes global immune defects with 

lower immunity to rhinovirus infections and invasive 

non-typhoidal Salmonella.[65,66,67] Importantly, the rising 

profile of (microscopic and sub-microscopic) malaria 

and type 2 diabetes as co-morbid illnesses and cause of 

reduced healthspan and lifespan in the SSA region is 

attracting attention.[6,7,68,69] Type 2 diabetes mellitus and 

malaria enhance cell replicative senescence and may 

additively attenuate anti-viral effect of the anti-

senescence gene SIRTI.[70,71,72] Both diseases may 

activate the DNA Damage Response- (DDR)-HMGBI/2-

NF-kappaβ- Senescence-Associated Secretory 

Phenotype-(SASP) pathway, induce telomere attrition, 

upregulate senescence-associated secretory factors such 

as MCP-I and may negatively impact type 1 interferons 

needed for anti-viral/anti-bacterial defense.[73] Non-toxic 

metronomic usage of AMPK activators such as 
metformin, artesunate and esomeprazole which may 

inhibit HMGBI and NF-kappa B upregulation in malaria 

infection could demonstrate anti-inflammatory and 

senolytic effects acting on the above pathway.[74,75] 

 

The looming reality of a possible development of 

resistance to the ACTs in, or spread of K13-associated 

artesunate resistance to the SSA region calls for 

unwavering dedication to a search for probable safe 

options. For example, artesunate + azithromycin 

combination therapy has been found suitable as an 
efficacious and safe alternative in Asia.[76] The need for 

new remedies that may additionally quell the 

bourgeoning type 2 diabetes threat is compelling and 

glaring. 

 

Present study that MEALD combination prevents 

malaria, type 2 diabetes is explainable at several levels. 

Most importantly, AMPK activators such as calorie 

restriction, metformin, artesunate and esomeprazole may 

enhance signalling via insulin receptor 

substrate1/2(IRS1/2), inhibit Plasmodium falciparum-

induced PD-I, LAG3 and CTLA4, attenuate the host 
upregulated PAK-MEK signalling pathway.[32] They also 

down-regulate the increased HMGBI-RAGE and HIF-α 

signalling axis but increase p53 protein during malaria 

infections.[36,37,38] These mechanisms serve to enhance 

immunity, decrease the immune cell exhaustion, increase 

parasite killing and sustain glucose homeostasis. These 

actions of MEALD combination are vital to parasite 
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clearance and prevention of complications during 

malaria infections.[14] 

 

Metformin is a known anti-diabetic associated with 

inhibiting progression of pre-diabetes in the Diabetes 

Prevention Program(DPP) study.[77] Artemisinins induce 
insulin release at high glucose concentrations via GABA-

A receptor while esomeprazole also enhances insulin 

release.[53] Esomeprazole and artesunate stand to 

synergise with low-dose metformin in glucose 

homeostasis and reducing malaria transmission, a key 

issue in resistance transfer. Metformin-Fe3+ interactive 

complex in the red blood cell of infected parasites 

inhibits the cysteine protease (falcipains-2, 3) that may 

promote insulin catabolism, and also inhibit 

haemoglobinase thus increasing insulin signalling and 

preventing haemoglobin usage by the malaria parasite.[78] 

The mechanism of metformin as anti-proteolytic and 
proteasome inhibitor is similar to curcumin’s. Its 

inhibition of PAKI and PD-I which are upregulated in 

malaria, type 2 diabetes stands metformin at the cross-

roads of malaria, bacterial/viral infections, type 2 

diabetes mellitus, neurodegenerative diseases and 

cancers.[32,79,80] 

 

Enhancement of the insulin signalling pathway, the 

PI3K-Akt-eNOS-PPAR-alpha pathway, mitochondrial 

biogenesis by metformin, artesunate and esomeprazole 

may decrease malaria transmission from the infected 
mosquito,[81] malaria parasitaemia, malaria- and type 2 

diabetes-associated inflammation. These may also serve 

to attenuate PD-I/PD-4 expression in patients with type 2 

diabetes and severe sepsis.[51,82,83,84,85] 

 

Metformin, artesunate and esomeprazole inhibit MDR 

proteins and multi-drug resistance-associated 

protein.[86,87,88,89] As AMPK activators, they inhibit the 

parasite’s proteasome and decrease the upregulated UPR 

implicated in artemisinin K13 mutation-associated 

resistance. Similar to artesunate, metformin shows 

additive effect with the proteasome inhibitor, bortezomib 
in inhibiting K13 mutation-associated resistance.[25,90] 

Proton pump inhibitors also prevent mutations and this 

may be useful in prevention of resistance emergence in 

malaria.[91,92] pfCRT which is related to pfMDRIhas been 

termed a proton pump.[64,93,94] KEAP-I which is inhibited 

by esomeprazole, metformin and artesunate is identical 

to K13 involved in artemisinin resistance.[95,96] AMPK 

activators inhibit mTOR-dependent translations and 

which is dysregulated by sporozoites invasion of the 

liver thereby enhancing immune response in malaria, 

preventing mutations,[97,98] and even BBB disruption.[98] 
It may be note-worthy that the UPR may also be 

upregulated in obesity and insulin resistance.[100] 

 

Esomeprazole, metformin and artesunate may decrease 

brain iron overload associated with type 2 diabetes, aging 

and inflammation-related neurodegenerative diseases 

such as Alzheimer’s disease.[101,102,103] Increased iron 

trafficking in concert with uric acid and haemozoin may 

be associated with increased ATP release, NLRP3 

inflammasome, NF-kappa B activation and telomere 

attrition which are commonalities in malaria and type 2 

diabetes. They result in downregulation of insulin 

signalling, attenuation of immunity and increase risk of 

malaria, bacterial, fungal and viral 
infections.[104,105,106,107,108] 

 

An elevated level of ATP has been recorded both in the 

extracellular environment and in the cytoplasm of host 

and malaria parasite.[34] Thus, downregulation of ATP by 

the AMPK activators calorie restriction, metformin, 

artesunate and esomeprazole may prevent ATP usage by 

hydrolysis essential in the actions of the Ca2+-ATPase 

PFATP6, Na+-ATPase pfATP4, H+-ATPase pfCRT and 

the ecto-nucleoside triphosphate diphosphohydrolases 

(NTPDases).[109] They coordinately target ATP/ERKI/2-

P2X7- NLRP3-HMGBI axis to enhance follicular helper 
cell immune function that may be impaired by P2X7 

activation;[110] They thus decrease parasite invasion of 

RBCs, malaria parasitaemia and HMGBI-mediated 

insulin resistance.[111,112] P2 purinergic receptors regulate 

insulin release while hyperglycaemia-induced renal 

P2X7 receptor activation enhances renal monocyte 

accrual via MCP-I which may result in diabetic 

glomerulosclerosis.[113] 

 

In the present study, MEALD combination 

administration most significantly prevented malaria 
recrudescence/reinfection than metformin alone or 

placebo. It also attenuated/prevented rise in blood 

glucose levels, infections and other metabolic syndrome-

associated risk factors with consequent improved quality 

of life.[114,115,116] 

 

Artemisinins are pro-oxidants, and anti-oxidants (ROS 

scavengers) may interfere with their mechanism of 

action.[117,118] but metformin-esomeprazole-artesunate 

combination may offset this potential side-effect because 

the non-endoperoxides and probably mitohormetics, 

metformin and esomeprazole, may also be associated 
with early increases in ROS production.[119,120] 

 

Aging and glucose loading reduce bone remodelling and 

decrease osteoblast-derived osteocalcin which enhances 

insulin sensitivity in adipocytes.[121] Also, plasmodial 

products such as the metabolite haemozoin, a 

biocrystalline haemoglobin degradation material, persist 

in the bone marrow and promote chronic bone loss 

through receptor activator of NF-kappaB ligand 

(RANKL).[122] While low doses of esomeprazole may not 

pose risk for osteoclastic activity as opposed to high 
doses, artesunate and metformin inhibit RANKL and 

may additively prevent bone resorption,[123,124,125] 

implicating their combined beneficial role in age-

associated osteoporotic bone pains.[126] PPIs, which 

inhibit vacuolar H+-ATPase, attenuate pathological 

hyperactivation of osteoclasts and may reduce osteolytic 

bone secondaries. They may decrease RANKL/ 

osteoprotegerin ratio,[127] inhibit osteoclast-precursor 
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cells and osteoclastogenesis while enhancing osteoblast 

cell viability at low doses.[128,129] This mechanism may 

also help explain present results. Blockade of RANKL 

signalling is also now known to improve hepatic insulin 

resistance and prevent development of diabetes 

mellitus.[130] 

 

CONCLUSION 
 

Owing to the present non-availability of suitable 

vaccines against malaria and type 2 diabetes, the only 

reliable bulwark against the co-morbid diseases and their 

complications may be the advent of a suitable preventive 

strategy such as a combination pill or poly-pill. Malaria 

and the metabolic syndrome pose overlapping 

aetiopathogenic mechanisms at the molecular level. 

Present results indicate that low doses of metformin, 

artesunate and esomeprazole are veritable non-toxic 
combination agents that may be useful for the prevention 

of malaria and factors of the metabolic syndrome. 
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