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INTRODUCTION 
 

4O% of the world’s population is at risk of malaria 

caused by Plasmodium falciparum with over 500 million 

cases annually associated with more than a million 

yearly fatalities.
[1]

 Most transmission occurs in sub-

saharan Africa where children and pregnant women are 

most negatively impacted. The multigenic and 

hypervariable Plasmodium falciparum erythrocyte 

membrane protein-I (pfEMP-I) family on the infected 

erythrocyte membrane is involved in cytoadherence to 

the chemokine CXCLI, thrombospondin, CI 

(complement receptor I), chondroitin sulphate-A (CSA), 

p-selectin, endothelial protein C receptor (EPCR), 

heparin sulphate, CD36 and ICAM-I.
[2,3,4]

 Unlike other 

pfEMP-I, varCSA binds to CSA of placental endothelial 

cells. 

 

The malarial parasite glycosylphosphatidylinositols 

(GPIs) inside the infected erythrocyte induce expression 

of the pyrogenic cytokines TNF-alpha, IL-I, and IL-6 in 

human macrophages. TNF-alpha as well as GPIs alone 

increase expression of E-selectin, ICAM-I and VCAM 

and the above-named adherence receptors which mediate 

binding via pfEMP-I.
[5] 

Sequestration, auto-agglutination, 

resetting, cytokines-induced excitotoxicity, endothelial 

activation, materno-fetal barrier thickening, fibrinoid 

deposits contribute to vascular obstruction and hypoxia 

as found in severe malaria, cerebral malaria and placental 

malaria. Also, as in pre-eclampsia where there is 
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ABSTRACT 
 

Recent evidence indicates that malaria, type 2 diabetes mellitus and hypertension constitute a ‘triumvirate’ that 

significantly increases the suffering in Africa. The contribution of malaria to the alliance may be via the up-

regulation of inflammatory and oxidative stress which attenuate factors of the insulin signalling pathway. 

Upregulation of immune-inflammatory cascade and ThI/Th17 reponse is a common mechanism in severe malaria, 

placental malaria, pre-eclampsia, hypertension, type 2 diabetes mellitus, auto-immune diseases and fetal growth 

restriction with placental insufficiency. Safe drugs that attenuate inflammatory and oxidative stress, decrease 

ThI/Th17 response, upregulate factors of the insulin signalling pathway and which kill the ring/early forms of the 

malaria parasite in the blood which particularly mediate the oxidative stress stand to be beneficial in these diseases. 

Rigorous supervision of malaria treatment with ACTs decreases umbilical artery resistance index in microscopic 

and submicroscopic placental malaria which has identical aetiopathogenic mechanisms with pre-eclampsia. The 

improved ACT campaign may have co-incided with the significant (P< 0.05) decrease in eclampsia rates observed 

2012-2016. Artesunate, esomeprazole, low-dose aspirin, calcium and vitamin A supplementation may upregulate 

factors of the insulin signalling pathway, enhance the actions of heme oxygenase –I and endothelial nitric oxide. 

They thus deserve attention as emerging agents that additively may enhance insulin signalling, and down-regulate 

the immune-inflammatory cascade, angiogenic/anti-angiogenic imbalance in type 2 diabetes, hypertension, severe 

malaria, placental malaria, pre-eclampsia and fetal growth restriction. 

 

KEYWORDS: Artesunate, Esomeprazole, Low-dose aspirin, Placental malaria, Pre-eclampsia, Fetal growth 

restriction, Metabolic syndrome. 
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leukocyte activation; in severe malaria, GPIs, 

haemozoin, infected erythrocytes and especially ICAM-I 

mediate leukocyte-endothelial activation.
[6,7,8] 

There is 

increased serum lactate and increased angiopoietin-2 

(Ang-2) in severe malaria which increases endothelial 

activation and sensitizes endothelium to TNF-alpha- 

induced endothelial cell permeability.
[9,10]

 Also, there is 

increased placental expression of Ang-2 and its receptor, 

tyrosine kinase receptor for immunoglobulin-like and 

EGF-like domain-2 (Tie-2) with lower Ang-I in pre-

eclampsia and pre-eclampsia-intra-uterine growth 

restriction.
[11]

 In addition, uric acid, which is a biomarker 

for pre-eclampsia, and produces a pro-coagulation state 

in Plasmodium falciparum malaria, is associated with 

endothelial activation and the decrease in 

thrombomodulin levels.
[12] 

 

Activated protein C is decreased in severe malaria 

and pre-eclampsia and contributes to the pro-

coagulant state 

Low thrombomodulin levels in brain and placenta in 

severe malaria is associated with less activated protein C 

(APC) with consequent more free thrombin for its other 

functions on activated endothelium. Increase TNF-alpha- 

induced thrombin formation enhances cytoplasmic 

activity of high-mobility group box-I(HMGB-I) (a 

master regulator of inflammatory cascades) and tissue 

factor (TF).
[1] 

Malaria-associated loss of endothelial 

protein C receptor(EPCR) combined with parasite 

impairment of the EPCR-APC interaction promote 

coagulation, inflammation and endothelial barrier 

breakdown.
[3,13] 

This endothelial barrier breakdown may 

be associated with high angiotensin (1-7) peptides which 

are reported to confer protection in cerebral malaria by 

increasing BBB integrity.
[14] 

Thrombomodulin, activated 

protein C, protein Z, protein S levels are also low in 

women with pre-eclampsia and pregnancy 

complications,
[15,16,17,18]

 and administration of 

thrombomodulin increases utero-placental perfusion in 

pre-eclampsia models. Activated protein C and insulin 

work in concert with VEGF and platelet-derived growth 

factor to activate PI3K/Akt and decrease diabetic 

complications.
[19] 

There is an inhibitory role of the PI3K 

signalling pathway in VEGFR-2-induced tissue factor 

expression.
[20]

 

 

Enhanced immune-inflammatory cascade in severe 

malaria, placental malaria and pre-eclampsia: An 

overlay of mechanisms 

As in pre-eclampsia, placental malaria and IUGR are 

associated with excessive ThI inflammatory responses, 

decreased membrane-bound HLA-G expression and 

aberrant activation of natural killer cells.
[21,22,23,24,25] 

While natural killer cells (NK cells) stimulate 

recruitment of CXCR3+ T-cells to the brain during 

cerebral malaria,
[26]

 decreased activation of uterine NK 

cells (uNK) by the low HLA-G is involved with 

elaboration of anti-angiogenic proteins in pre-eclampsia. 

There is increased pfGPIs-induced TNF-alpha via TLR-

2, TLR-4, TLR-9, NF-kappa B and MAPK in placental 

malaria,
[27] 

and increased TLR-9, TLR-7/8 and TNF in 

pre-eclampsia.
[28,29,30]

 Furthermore, there is increased 

IFN-gamma- and TNF-alpha-induced CXCL10(IP-10) 

which is anti-angiogenic and chemotactic for ThI 

lymphocytes in severe malaria and pre-

eclampsia.
[31,32,33,34] 

The interleukin-I receptor-like I 

soluble ST2 (sST2), a decoy receptor for IL-33 is 

associated with pre-eclampsia, experimental cerebral 

malaria and cardiac stress.
[35,36]

 

 

TLR activation in pre-eclampsia and malaria may 

enhance C5a-induced pro-inflammatory response by 

negatively modulating the second C5a receptor, 

C5L2.
[37,38]

 C5a-induced signalling via HMGB-I is a 

potent inducer of anti-angiogenic sENG, sFlt-I and 

increased Ang-2/Ang-I ratio in human malaria and 

placental malaria.
[39,40,41,42,43,44,45] 

GM-CSF leads to TNF-

alpha increases in cerebral malaria and its induction by 

TNF-alpha in pre-eclampsia plays a role in macrophage 

and dendritic cell activation which links innate immunity 

to acquired immunity.
[46,47]

 Thus similarity in angiogenic 

profiles between pregnancy-associated malaria and pre-

eclampsia has been reported to be associated with the 

reduced placental perfusion and low PAPP-A in the two 

illnesses.
[48]

 The increased complement activation in the 

two illnesses is associated with increased anti-angiogenic 

profiles and oxidative stress which induces trophoblastic 

cell death and excitotoxicity.
[49] 

It has been noted that 

immune activation, especially in the second infection in 

children and primary infection in non-immuned adults, 

may be more important in malarial pathology where the 

excessive IFN-gamma-induced increase in TNF-alpha 

now fails to control the parasitaemia but activates an 

immunopathology.
[50,51]

 In concert, increaed haemozoin, 

free heme, ferritin and arginase serve to amplify the 

immunopathology. 

 

Oxidative stress in malaria and pre-eclampsia impair 

insulin signalling 

There is increased oxidative and endoplasmic reticulum 

stress due to the inflammatory process, free iron, free 

heme, free DNA, which upregulate ROS, RNS and 

ischaemia-reperfusion in pre-eclampsia, severe malaria 

and fetal growth restriction.
[52,53]

 These serve to attenuate 

mitochondrial function and insulin signalling pathway 

(Figure.I).
[54,55,56,57,58,59]

 Haemolysis in malaria increases 

arginase levels which decrease endothelial nitric oxide 

levels.
[10]

 Enhanced TLR-9 provokes inflammation in 

response to fetal DNA and this may be the mechanism 

for fetal loss in preterm birth and pre-eclampsia.
[60] 

The 

phosphatidylinositol-3 kinase signalling (PI3K-Akt) 

pathways exerts protective effects in malaria and loss of 

Akt activity increases sEng release in pre-eclampsia 

associated with low Tregs.
[61] 

Although, Tregs may not 

be decreased in malaria, they are rapidly overwhelmed in 

severe infections.
[62]

 In fact, sex-related low Tregs have 

been observed in malaria that is associated with higher 

IFN-gamma responses.
[63] 
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There is evidence of insulin resistance in uncomplicated 

malaria with increased oxidative stress markers such as 

C-reactive protein.
[64,65] 

Malaria is associated with high 

blood pressure via increased expression of inflammatory 

and oxidative stress markers and a malaria-high blood 

pressure hypothesis has been formulated which may be 

partly due to the high levels of angiotensin-II in severe 

malaria.
[14,66,67] 
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The insulin signalling pathway is attenuated in 

malaria-, pre-eclampsia-induced oxidative stress and 

metabolic syndrome with attendant decreased heme 

oxygenase-I and endothelial nitric oxide 

Therapeuticall targeting mitochondrial redox signalling 

may alleviate reactive oxygen species- and reactive 

nitrosative species-induced endothelial dysfunction in 

pre-eclampsia, which has similar aetiopathogenesis with 

the metabolic syndrome,
[68]

 placental malaria and fetal 

growth restriction,
[59]

 which are also associated with late-

life development of the metabolic syndrome.
[69]

 

i) Host AMPK is deleterious to intra-cellular growth 

and replication of Plasmodia spp.
[70] 

AMPK 

activators and mTOR inhibitors such as calorie 

restriction-mimetics, methylene blue, sulforaphane, 

retinoic acid, rapamycin, metformin, artemisinins, 

salicylates and rosiglitazone inhibit parasite growth 

and reduce malarial parasitaemia.
[71,72,73,74,75]

 

Mammalian target of rapamycin (mTOR) inhibitors 

attenuate cerebral malaria and the new mTOR 

inhibitors, torins, are potent anti-malarials against 

the liver and blood stages.
[76,77]

 Sporozoites infection 

of hepatocytes activate mTOR.
[76]

 

ii) PI3-K/Akt activation exerts protective effects during 

sepsis by controlling C5a-mediated activation of the 

innate immune system.
[78] 

Atorvastatin enhances 

PI3-K/Akt and eNOS to prevent Plasmodium 

falciparum cytoadherence and endothelial 

damage.
[79] 

Artemisinins activate GABA-A receptor 

which enhances pancreatic β-cell neogenesis via 

inhibition of the master regulator of transcriptional 

activity Arx;
[80] 

and enhances PI3K/SirtI signalling 

via protein kinase C.
[81]

 GABA-A attenuates ThI 

responses and increase Tregs which may be low in 

malaria and pre-eclampsia. GABA-Aergic signalling 

also inhibits cytotoxic CD4+ T-cells and CD8+ T-

cells and this is beneficial in severe malaria. Both 

endogenous and inducible nitric oxide inhibit 

cysteine protease of plasmodia and HO-I helps 

maintain bioactive levels of endogenous nitric 

oxide.
[82]

 

iii) Autophagy induction by metformin, esomeprazole, 

low-dose artesunate, calcium, Vitamin D3 and low-

dose aspirin degrade kelchin-like ECH-associated 

protein-I(keap-I) which sequesters Nrf-2 in the 

cytoplasm, thereby allowing nuclear accumulation 

of Nrf-2. 

iv) PPAR-gamma-retinoid X receptor agonists increase 

CD36-dependent phagocytosis of Plasmodium 

falciparum in parasitized erythrocytes and decrease 

malaria-induced TNF-alpha secretions by monocytes 

and macrophages.
[51]

 

 

Multiple pathways regulate heme oxygenase -I(HO- I) 

activity 

HO-I possesses anti-malarial,
[83,84] 

anti-oxidant,
[85,86]

 anti-

hypertensive,
[87,88]

 anti-autoimmune,
[89] 

and angiogenic 

activities and its regulation is via multiple pathways.
[90,91] 

a) AMPK activation phosphorylatesnuclear factor-

erythroid 2 p45-related factor 2(Nrf-2) at the Ser 550 

residue and this coupled with AMPK-mediated 

GSK-3 beta inhibition promotes nuclear import 

(accumulation) of Nrf-2 to attenuate endoplasmic 

reticulum stress, 
[92]

and for anti-oxidant response 

element (ARE)-driven gene transactivation;
[93] 

which 

in part contributes to HO-I release.
[94] 

AMPK and 

FoxO also inhibit NF-kappaB to induce nulear 

import of Nrf-2.
[95] 

By inhibiting NF-kappa B and 

activating AMPK, the PPI esomeprazole may 

increase nuclear accumulation of Nrf-2, decrease 

inflammatory cytokines, increase HO-I levels, 

insulin release/sensitivity and enhance mitochondrial 

function (see Figure I). Low-dose aspirin and low-

dose artesunate also exhibit these functions. 

b) HO-I release is also mediated through by an 

upstream PI3K/Akt signalling pathway,
[96] 

and by 

anti-oxidants-induced Nrf-2 phosphorylation at Ser 

10in response to PKC but this may not lead to its 

nuclear import.
[97]

 

c) Class III protein deacetylase Sirt I is induced by 

calorie restriction and upregulates Nrf-2 by 

attenuating the actions of (kelchin-like ECH-

associated protein-I(Keap-I).
[95]

 

d) Activation of Akt, HSP 90 (induced by anti-

oxidants) and endothelial nitric oxide promote 

nuclear import of Nrf-2 via their modification of 

Keap-I.
[98,99]

 Statins,
[100] 

thiazolidinediones,
[101]

 

artesunate,
[86,102,103]

 aspirin,
[104,105]

 PPIs such as 

pantoprazole, esomeprazole and 

lansoprazole,
[106][107][108]

 hydrogen sulphide,
[109]

 

calcium,
[110]

 cis-9-retinoic acid,
[111]

 vitamin D,
[112]

 

exercise,
[113] 

nitric oxide, carbon monoxide and 

hydrogen sulphide enhance nuclear import of Nrf-2 

for anti-oxidant defense.
[114] 

The anti-oxidant nitric 

oxide is beneficial in severe malaria and pre-

eclampsia.
[115] 

Some of these agents are more 

specific and safer than others in enhancing nuclear 

accumulation of Nrf-2. For example, esomeprazole 

may be more specific than artesunate. Endogenous 

priming of the anti-oxidant system by moderate 

exercise may confer more health benefits than 

exogenous supplement of anti-oxidants.
[113]

 

e) Estrogen receptor signalling and the PI3K/Akt 

pathway are involved in eNOS activation which 

rapidly upregulates Nrf-2.
[116]

 

f) Calcium enhances the levels of Nrf-2 via its 

transactivation by specifically enhancing nuclear 

import of Nrf-2/ras GTPase activating-like protein-I 

(IQGAP-I).
[117]

 It also has the same action as the 

vitamin A metabolite, cis-9-retinoic acid which 

synergistically with PPAR-gamma enhance tertiary 

butylhydroquinone (tBHQ)-mediated increase in 

Nrf-2.
[118]

 

g) L-arginine, erythropoietin, nitric oxide, statins which 

upregulayte nitric oxide and levamisole which 

inhibits CD36 to decrease cytoadherence.
[119]

 

h) Antagonists of IL-17 such as AMPK and PPAR-

gamma inhibit ROS-induced upregulation of TH17-

producing IL-17,
[120]

 attenuate IL-6 and enhance 

Nrf-2/HO-I to induce mitochondrial biogenesis. 
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Artesunate, esomeprazole and low-dose aspirin are 

safe in pregnancy, attenuate malaria parasite growth 

and enhance HO-I levels 

The above illustrates that artesunate and esomeprazole as 

add-ons to aspirin and/or calcium may be beneficial in 

halting the growth of Plasmodium falciparum and 

preventing pre-eclampsia and this may involve several 

mechanisms. They may synergistically enhance optimal 

HO-I levels which is beneficial in hypertension, diabetic 

complications, malaria, placental malaria, pre-eclampsia 

and IUGR. The combination of PPIs with 

artesunate may decrease incidence of resistance which is 

the problem associated with use of artesunate for any 

other condition apart from malaria.
[121]

 PPIs are reported 

to inhibit multi-drug resistance protein associated with 

drug resistance to pyrimethamine and chloroquine in 

malaria infection.
[122]

 mTOR inhibitors and AMPK 

pathway activators that induce autophagy and upregulate 

HO-I such as calorie restriction, esomeprazole, low-dose 

artesunate and low-dose aspirin enhance resistance to 

malaria.
[71,123]

 Aspirin by down-regulating parasite 

burden, inflammatory mediators and coagulation confer 

resistance in malaria.
[124]

 Previously, a polypill concept 

has been put forward in the prevention of hypertensive 

disorders in pregnancy.
[125]

 

 

Artesunate is more beneficial than quinine as first 

line agent against malaria 

Workers have demonstrated that artesunate clears 

malarial parasites in blood faster than quinine.
[126] 

Artesunate shows more efficacy than quinine in the 

critical early phase (first 24 hours) of malaria infection, 

arresting the ability of young parasites to mature to more 

damaging forms. Artesunate prevents cytoadherence and 

kills the non-adhesive ring forms, mainly responsible for 

inflammatory-oxidant stress in circulation, faster than 

quinine which only kill the adult parasites in parasitized 

red blood cells.
[119]

 Intermittent preventive treatment in 

Senegal with sulfadoxine-pyrimethamine-artesunate 

(IPTc) and Ghana (IPTp) has resulted in decline of 

malaria, placental malaria; and IPTc may further prevent 

increased resistance.
[127,128]

 SNP polymorphisms of the 

pfdhfs and pfdhf genes may confer resistance to 

sulfadoxine and pyrimethamine respectively.
[128]

 

Artemisinins upregulate endothelial nitric oxide and 

upstream kinases including Akt, AMPK and PGC-I alpha 

and enhances nuclear import of Nrf-2 to increase HO-

I.
[129] 

These considerations make artesunate, which is 

reported safe in first trimester,
[130,131,132] 

unique in 

prevention of adverse pregnancy outcomes and in the 

prevention and management of placental malaria, pre-

eclampsia and IUGR in Africa. Rigorous treatment of 

microscopic and submicroscopic malaria by ACTs 

decreases umbilical resistance associated with placental 

malaria and the low cerebroplacental Doppler ratio 

associated with small-for-gestational-age babies and low-

birth weights.
[133] 

Moreover, artesunate, via effects in 

man and in the mosquito, reduces post-treatment 

transmission of P.falciparum.
[134,135]

 Esomeprazole is a 

drug used in treatment of peptic ulcer disease (PUD) and 

no significant adverse effect has been reported when 

used in pregnancy.
[136] 

It has a beneficial role in pre-

eclampsia.
[136,137,138]

 Additionally, esomeprazole exhibits 

anti-malarial effects inhibiting the ATP synthase  of the 

parasite.
[139] 

A synergistic in vitro anti-malarial activity 

of the PPI omeprazole and artemisinins has been 

reported.
[121]

 Low-dose aspirin started after 12 weeks is 

reported recently to be associated with decreased rate 

(30% decrease) of pre-eclampsia.
[140,141,142]

 

 

There is a changing profile of eclampsia as the leading 

cause of maternal mortality rate in Australia and our 

locality with pulmonary embolism as the present leading 

cause in Australia and obstetric haemorrhage as the 

leading cause in Nigeria.
[143,144]

 This may be due to the 

advanced obstetric care and sophisticated detection of 

risk factors and their prevention in Australia; while the 

observed decrease of eclampsia rate as a leading cause of 

adverse pregnancy outcomes/MMR rate in Nigeria has 

co-incided with better awareness of the ACTs in 

treatment and prophylaxis of malaria.
[132,145] 

The Abuja 

Declaration of the Africa Summit on Roll Back Malaria 

(RBM), held April 25, 2000 in Abuja, Nigeria helped 

formulate the National Anti-malarial Treatment Policy 

which had as its principal objectives to halve the malaria 

mortality by 2010, at least 60% good access by 2005 to 

anti-malarial treatment and prevention of resistance to 

anti-malarial drugs. Our retrospective study in five 

satellite centres indicates decreased rates of eclampsia 

since the introduction and better awareness of 

artemisinin-based combination therapy; which may be 

supplemented with low-dose aspirin and/or calcium 

(Table I). Drugs that enhance mitochondrial biogenesis 

attenuate mitochondrial dysfunction associated with pre-

eclampsia/IUGR spectrum, type 2 diabetes mellitus and 

acquired epilepsy.
[146,147]

 Our laboratory-based studies 

have demonstrated the efficacy of artesunate in 

decreasing uric acid and glucose levels of streptozotocin-

associated type 2 diabetes mice models and inhibiting 

epileptogenesis in mice models of epileptogenesis.
[148]

 

Additionally, artesunate, not metformin,
[149] 

additively 

enhanced the effects of ceftriaxone to upregulate the 

anti-excitotoxic index of GABA-A/glutamate to 

attenuate epileptogenesis in our mice models. 

Artesunate-induced decrease of uric acid levels lead to 

NF-kappa B inhibition and upregulation of the anti-

oxidant Nrf-2.
[150]

 Low-dose artesunate administered 

chronically stand to give benefits in eclampsia 

prevention since it enhances GABA-Aergic 

neurotransmission. The addition of esomeprazole to the 

combination of artesunate and aspirin may help reduce 

incidence of resistance to artesunate and stands to 

significantly reduce severe malaria, pre-eclampsia, 

placental malaria in women and IUGR rates.
[121,122,139]

 

 

Pre-eclampsia may increase type 2 diabetes mellitus 

and hypertension rates 

There may be a bi-directional relationship between type 

2 diabetes mellitus-hypertension (metabolic syndrome) 

and pre-eclampsia in women. They display overlapping 
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aetiopathogenic mechanisms,
[147,151,152,153] 

where 

endoplasmic reticulum stress and inflammatory –

oxidative pathways are crucial factors.
[59,154]

 

Cardiovascular risk factors, which may persist, are 

upregulated in women and offspring after pregnancies 

complicated by pre eclampsia or diabetes mellitus.
[155]

 

Aberrant NF-kappa B activation in gestational diabetes 

and hypertension by angiotensin-II ATI receptors 

represses the IL-6 and TLR-4 inhibitor microRNA-

98/lethal-7 (Let-7) with consequent increased induction 

ofNF-kappa B production of IL-6 to initiate type 2 

diabetes and hypertension respectively and a variably 

orchestrated inflammatory chaos.
[152,156,157] 

Also and 

significantly, there is angiotensin-II upregulation in 

hypertension, type 2 diabetes, intra-uterine growth 

restriction and malaria which increase NF-kappa B levels 

with consequent attenuation of heme oxygenase-I levels 

and pancreatic insulin secretion. In pre-eclampsia, the 

presence of angiotensin-I agonistic antibody (ATI-AA) 

which induce SFlt-I coupled withthe increase in 

angiotensin-II sensitivity and decrease in angiotensin (1-

7) peptides has a negative impact on heme oxygenas-I 

level important for cardiovascular integrity.
[14,147] 

Angiotensibn II may be protective (via angiotensin (1-7) 

peptides) against malaria- increased oxidative stress and 

BBB leakage, but may be pro-hypertension and pro-

excitotoxicity via the ATI subtype 

receptors,
[158,159,160,161,162] 

which may be the cause of the 

decreased responsiveness of the renin-angiotensin system 

in blacks to angiotensin converting enzyme 

inhibitors.
[163]

 High salt intake amongst blacks, through 

sodium-mediated increased sensitivity to angiotensin-II, 

of course, has a compounding effect. Malaria-

parasitemia and angiotensin II-induced- IL-17 production 

also cause NF-kappa B activation, including activation of 

TNF-alpha and IFN-gamma and decreased IL-10 and 

TGF-beta. The reinforcing roles between angiotensin-II 

and IL-17 may be the regulating link between auto-

immune diseases, obesity-hypertension, gestational 

diabetes mellitus, type 2 diabetes mellitus, pre-

eclampsia, placental malaria and intra-uterine growth 

restriction.
[164,165,166,167,168,169,170] 

Angiotensin receptor 

blockers (ARBs) such as losartan (a specific blocker of 

angiotensin ATI receptor) inhibits Th1 and Th17 

polarisation and induces potent regulatory T-regs. Th1 

and Th17 helper cells which produce IL-17 have 

overlapping and collaborative roles.
[171] 

Through AMPK 

activation, artesunate, aspirin and esomeprazole may also 

attenuate angiotensin II ATI receptor subtype signalling 

via PKC, positively influence Th17/T-reg balance and 

block IL-17/IL-6 positive feed-back.
[172] 

 

Apart from attenuating malaria, hypertension and type 2 

diabetes, AMPK activation and enhanced insulin 

signalling pathway by artesunate-esomeprazole add-ons 

to aspirin may decrease insulin-like growth factor-I 

(IGF-I), IL-17 levels and increase IGF-IBPs, Tregs 

which are dyregulated in diseases associated with the 

metabolic syndrome (obesity and disorders of adipose 

tissue) such as obesity-hypertension, type 2 diabetes, 

acute coronary syndrome, colo-rectal carcinoma (CRC) 

and osteoarthritis. Thus, artesunate and artesunate add-

ons to low-dose aspirin may prevent not only type 2 

diabetes, auto-immune diseases, cancers and major 

cardiovascular events but also malaria, placental malaria, 

pre-eclampsia/eclampsia and fetal growth 

restriction.
[172,173,174,175]

 

 

Table I: Number of eclampsia referrals from 5 

satellite centers, 2012-2016. 
 

 2012 2013 2014 2015 2016 

Number of 

eclampsia 

patients 

referred 

5.53 

±3.10 

4.46 

+2.20 

2.00 

+1.90 

1.60 

+2.60 

1.80 

+2.10 

 

Table 1: Nnumber of eclampsia referrals showed showed 

a significant (P < 0.05: Unpaired t-test) downwards trend 

(2012-2016). The Roll-Back-Malaria campaign started in 

2000, with one of its aims being to create at least 60% 

awareness to ACTs by the year 2005. 

 

Malaria-induced oxidative stress may enhance 

overactivation of poly-(ADP ribose) polymerase to 

cause mitochondrial dysfunction, decrease in insulin 

signalling and genomic instability 

 

Malaria-induced oxidative stress increases inducible 

nitric oxide (iNOS) which through peroxynitrite 

enhances nuclear-to-cytoplasmic movement of HMGB-I, 

cause overactivation of poly-(ADP ribose) polymerase to 

cause genomic instability, DNA damage, decreased 

mitochondrial function and decreased insulin 

signalling.
[176]

 Artesunate attenuates mitochondrial-to-

nuclear stress induction through activation of ERK1/2 - 

CREB signalling, decreases mitochondrial DNA damage 

and restores abnormal changes in nuclear morphology by 

inhibiting β-amylod-induced apoptosis.
 [177,178]

 Similar to 

metformin, esomeprazole, low-dose aspirin, low-dose 

artesunate-mediated down-regulation of poly-(ADP 

ribose) polymerase may induce the inhibition of NF-

kappa B and enhanced SIRT-I levels. This serves to 

positively impact retrograde mitochondrial-to-nucleus 

stree signalling as well as anterograde nucleus-to-

mitochondrial signaling,
[179,180]

 both needed for cellular 

homeostasis and insulin sensitivity.
[181,182,183]

 

 

CONCLUSION 
 

Present evidence shows that low-dose artesunate and 

esomeprazole and low-dose aspirin combination therapy 

enhance the anti-oxidant role of the Nrf-2-ARE-HO-I 

axis which also upregulates the insulin signalling 

pathway to enhance mitochondrial biogenesis; and 

attenuate malarial pathogenesis which is important in 

inducing oxidant stress.  

 

Community-based trials of artesunate, esomeprazole as 

add-ons to low-dose aspirin may yet prove their role as a 

worthwhile combination therapy that may protect against 
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and reduce the burden of placental malaria, pre-

eclampsia, HELLP, APS, IUGR, type 2 diabetes mellitus 

and hypertension in women of child-bearing age. 

 

The well-deserved further appraisal of the combination 

therapy in the prevention/treatment of malaria - 

metabolic syndrome spectacle and aftermaths in the 

population at large is critically compelling.  
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