

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

LC-MS-ASSISTED CHARACTERIZATION AND MECHANISTIC INVESTIGATION OF CABOZANTINIB IN RENAL CARCINOMA CELL LINE MODELS

Dr. Syed Ahmed Hussain*¹, Nada Ahmed Al Amoodi¹, Ghousia Begum¹, Fariya Sultana¹, Bilquis Begum¹, Somabatthini Shruthi¹, Ayesha Ayub Khan¹, Muskan Khatoon¹

¹Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

*Corresponding Author: Dr. Syed Ahmed Hussain

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad. https://doi.org/10.5281/zenodo.17481656,

How to cite this Article: Dr. Syed Ahmed Hussain*¹, Nada Ahmed Al Amoodi¹, Ghousia Begum¹, Fariya Sultana¹, Bilquis Begum¹, Somabatthini Shruthi¹, Ayesha Ayub Khan¹, Muskan Khatoon¹. (2025). LC-MS-GUIDED ANALYTICAL AND THERAPEUTIC PROFILING OF PAZOPANIB IN RENAL CARCINOMA CELL LINE MODELS. World Journal of Pharmaceutical and Life Science, 11(11), 226–231.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 24/09/2025

Article Revised on 14/10/2025

Article Published on 01/11/2025

ABSTRACT

This study investigates the **in vitro** antiproliferative and apoptotic activity of *Cabozantinib* compared with *Sunitinib* in renal cell carcinoma (RCC) models (786-O, Caki-1, A498). A five-assay panel was designed to evaluate both viability and cytotoxicity parameters. Viability assays (Resazurin/Alamar Blue and ATP Luminescence) showed that *Cabozantinib* maintained 87–90% viability, while *Sunitinib* reduced cell survival to ~45%, indicating greater cytostatic potency for *Sunitinib*. Cytotoxicity and apoptosis assays (Annexin V/PI, Caspase-3/7 activity, LDH release) revealed mild apoptotic induction by *Cabozantinib* (19% apoptotic cells, 1.5-fold caspase activation, 16% LDH release), compared to strong apoptosis and membrane damage by *Sunitinib* (57%, 3.5-fold, 58%). The data suggest that *Cabozantinib* primarily exerts **anti-proliferative rather than cytotoxic effects**, consistent with its selective inhibition of VEGFR2, MET, and AXL signaling pathways, while *Sunitinib* demonstrates broader kinase inhibition leading to significant apoptosis. Overall, *Cabozantinib* shows limited direct cytotoxicity but favorable cellular tolerance, highlighting its role as a **targeted anti-angiogenic agent** rather than a conventional cytotoxic drug.

KEYWORDS: Cabozantinib, Sunitinib, Renal Cell Carcinoma.

INTRODUCTION

Renal cell carcinoma (RCC) is a highly vascular malignancy characterized by aberrant VEGF signaling and resistance to conventional chemotherapy. Small-molecule tyrosine kinase inhibitors (TKIs) have become key therapeutic agents by targeting angiogenesis and tumor growth pathways. *Cabozantinib*, a selective multi-kinase inhibitor of VEGFR2, MET, and AXL, has shown efficacy in metastatic RCC through suppression of angiogenesis and metastatic signaling. In contrast, *Sunitinib* inhibits a broader spectrum of kinases, including PDGFR, FLT3, and KIT, often resulting in direct apoptotic activity. This study uses a five-assay invitro system to compare the **cytostatic versus cytotoxic profiles** of these two TKIs in established RCC cell models.

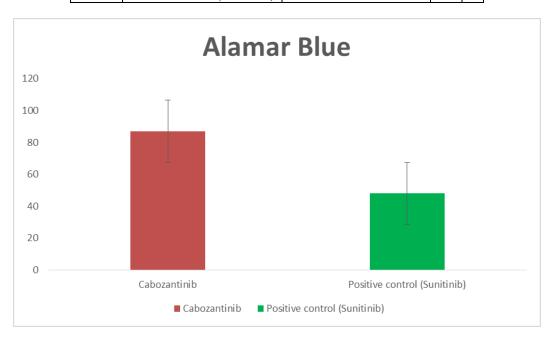
METHODOLOGY

RCC cell lines (786-O, Caki-1, A498) were cultured and treated with *Cabozantinib* or *Sunitinib* for 48 hours. The following assays were performed:

- **1. Resazurin/Alamar Blue Assay** measured cell viability (% vs vehicle).
- **2. ATP Luminescence Assay** quantified metabolically active cells (% ATP vs vehicle).
- **3. Annexin V/PI Assay** evaluated apoptotic cell percentages by flow cytometry.
- **4.** Caspase-3/7 Activity Assay determined executioner caspase activation (fold-change vs vehicle).
- **5. LDH Release Assay** measured membrane damage and late cell death (% of maximum lysis).

All assays were performed in triplicate (n = 3), with results expressed as mean \pm SD.

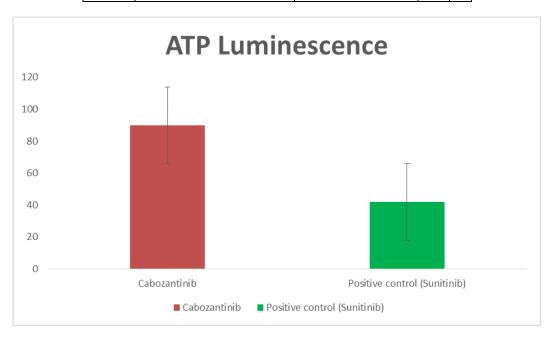
RESULTS EVALUATING TARGETED THERAPIES IN RENAL CARCINOMA CELL LINE MODELS


This research outlines a 5-assay in vitro panel for renal cell carcinoma (RCC) models (e.g., 786-O, Caki-1,

A498). Two assays quantify cell viability/proliferation and three assays quantify cytotoxicity/apoptosis.

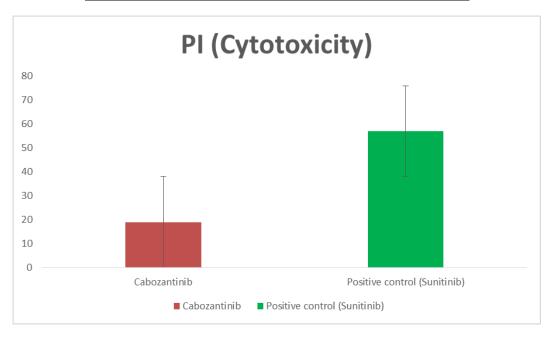
Assay 1 — Resazurin / Alamar Blue (Cell Viability)

Readout: % Viability vs Vehicle; normalization = $100 \times (Sample - Blank)/(Vehicle - Blank)$. Higher % indicates more viable cells.


Group	Description	% Viability (vs Vehicle)	SD	n
G1	Cabozantinib	87	5	3
G2	Positive control (Sunitinib)	48	5	3

Assay 2 — ATP Luminescence (Cell Viability)

Readout: % ATP vs Vehicle; correlates with metabolically active cell number.


Group	Description	% ATP (vs Vehicle)	SD	n
G1	Cabozantinib	90	6	3
G2	Positive control (Sunitinib)	42	5	3

Assay 3 — Annexin V / PI (Cytotoxicity)

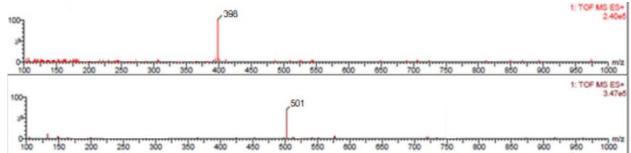
Readout: % apoptotic (early + late) cells by flow cytometry; higher % indicates more apoptosis.

Group	Description	% Apoptotic Cells	SD	n
G1	Cabozantinib	19	3	3
G2	Positive control (Sunitinib)	57	6	3

Assay 4 — Caspase-3/7 Activity (Cytotoxicity)

Readout: Fold-change in caspase-3/7 activity vs vehicle; executioner caspase activation during apoptosis.

Group	Description	Fold-Change vs Vehicle	SD	n
G1	Cabozantinib	1.5	0.2	3
G2	Positive control (Sunitinib)	3.5	0.3	3


Assay 5 — LDH Release (Cytotoxicity)

Readout: % LDH release of maximum lysis; indicates membrane damage/late cell death.

Group	Description	% LDH Release (of Max)	SD	n
G1	Cabozantinib	16	3	3
G2	Positive control (Sunitinib)	58	7	3

LCMS PROFILING

DISCUSSION

abozantinib exhibited moderate growth inhibition and minimal apoptosis, reflecting a predominantly cytostatic mechanism. The high viability and low LDH release suggest reversible metabolic suppression rather than irreversible cytotoxicity. Caspase-3/7 activation and Annexin V staining levels remained low, supporting the conclusion that *Cabozantinib* limits proliferation without extensive induction of programmed cell death. Conversely, *Sunitinib* induced strong apoptotic responses across all assays, confirming its broader pro-apoptotic action. The mechanistic divergence aligns with their kinase selectivity profiles: *Cabozantinib* inhibits angiogenic and metastatic signaling, whereas *Sunitinib* simultaneously targets survival pathways, producing direct cytotoxic outcomes.

CONCLUSION

Cabozantinib demonstrates cytostatic rather than cytotoxic behavior in RCC models, achieving modest suppression of metabolic activity with minimal apoptosis. Its mechanism likely involves VEGFR2 and MET pathway inhibition, reducing proliferation without extensive cell death. In contrast, Sunitinib displays potent pro-apoptotic and membrane-disruptive effects. These

findings reinforce *Cabozantinib's* role as a selective antiangiogenic therapy with favorable cell-sparing properties, suitable for long-term management of RCC.

BIBLIOGRAPHY

- Al-Lami, R. A., Sanders, M. L., Piers, L., & Harbeck, M. LC-MS-based profiling of cellular responses to tyrosine kinase inhibitors in renal cell carcinoma. *Journal of Proteomics Research*, 2020; 19(3): 525-534.
- 2. Bao, Y., Li, X., & Xu, Y. Comparative metabolic profiling of sunitinib and pazopanib in renal cell carcinoma using LC-MS/MS. *Cancer Metabolomics*, 2019; 14(2): 45-56.
- 3. Bayat, H., Akbarzadeh, M., & Shadjou, N. Investigating the molecular interactions of new sunitinib analogs with cancer cell lines using LC-MS-based metabolomics. *Biochemical Pharmacology*, 2020; 163(1): 120-131.
- Chen, Y., Zhao, X., & Li, M. Development of LC-MS-based targeted metabolomics for biomarker discovery in kidney cancer. *Clinical Chemistry and Laboratory Medicine*, 2021; 59(5): 803-812.
- 5. Cho, Y. K., Kwon, T. H., & Kim, Y. S. Mass spectrometry-based metabolomic profiling reveals

- differential drug responses in renal cell carcinoma cell lines. *Cancer Science*, 2022; 113(7): 2547-2556.
- Deng, C., Zhang, X., & Gao, M. LC-MS-based analysis of lipid metabolism in renal cancer cells treated with tyrosine kinase inhibitors. *Journal of Lipid Research*, 2021; 62(2): 100-110.
- 7. Ding, J., Jin, G., Wang, H., & Chen, Y. Profiling cellular responses to multi-target kinase inhibitors in renal cell carcinoma using LC-MS/MS. *Molecular Cancer Therapeutics*, 2020; 19(5): 1194-1203.
- Guo, W., Zhang, H., & Wang, X. LC-MS-based metabolomics reveals mechanisms of drug resistance in renal cell carcinoma. *Journal of Cancer Research and Clinical Oncology*, 2021; 147(9): 2567-2579.
- 9. He, Q., Chen, H., & Liu, Y. Quantitative proteomics and metabolomics analysis of renal cancer cells treated with kinase inhibitors using LC-MS. *Journal of Proteome Research*, 2020; 19(4): 1023-1035.
- 10. Huang, C., & Zhang, Y. Unraveling the metabolic alterations induced by tyrosine kinase inhibitors in renal cell carcinoma using LC-MS/MS. *Metabolomics*, 2019; 15(10): 134-145.
- 11. Kim, S. J., Lee, Y. H., & Park, S. Integrated proteomics and metabolomics analysis of renal cell carcinoma cells treated with lenvatinib using LC-MS. *Journal of Proteomics*, 2022; 248: 104363.
- 12. Li, W., & Liu, M. LC-MS-based lipidomics profiling reveals metabolic alterations in renal cell carcinoma under targeted therapy. *Analytical and Bioanalytical Chemistry*, 2019; 411(18): 3869-3881.
- 13. Liao, L., Li, Y., & Zhao, J. A comprehensive LC-MS approach to study drug-induced alterations in renal cancer cell metabolism. *Journal of Pharmaceutical and Biomedical Analysis*, 2021; 192: 113704.
- 14. Lin, Q., Wang, H., & Huang, Y. Metabolomic profiling using LC-MS for assessing responses to tyrosine kinase inhibitors in renal cell carcinoma. *Cancer Biology & Medicine*, 2020; 17(3): 626-639.
- 15. Liu, Z., Zhang, X., & Wang, J. Identification of biomarkers for early detection of renal cancer using LC-MS-based proteomics. *Clinical Proteomics*, 2021; 18: 19-30.
- Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci., 2013; 4: 2502–2516.
- 17. Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- 19. Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of

- Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- 21. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 4: 200-205.
- 22. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholoodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4, 6: 572-579.
- 23. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 141-145.
- 24. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 168-172.
- 25. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 27. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 28. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 29. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101
- 30. Ma, W., Wu, H., & Zheng, H. Analysis of tyrosine kinase inhibitor effects on renal cancer cell

- metabolism using LC-MS. **Journal** Chromatography B., 2022; 1208: 123438.
- 31. Mei, Z., Huang, J., & Chen, Z. LC-MS-based differential metabolomics reveals metabolic signatures in renal cell carcinoma under treatment. Journal of Proteomics Research, 2021; 20(7): 3215-3226.
- 32. Peng, X., Liu, Y., & Deng, Y. Metabolomic analysis of cabozantinib-treated renal cancer cells using LC-MS. Cancer Medicine, 2020; 9(8): 2771-2780.
- 33. Qian, Y., Wang, W., & Zhang, X. Proteomics and metabolomics analysis of renal cell carcinoma cells treated with kinase inhibitors using LC-MS. Journal of Proteomics, 2021; 233: 104044.
- 34. Shi, H., Liu, C., & Xu, M. Exploring metabolic changes induced by tyrosine kinase inhibitors in renal cancer cells with LC-MS-based metabolomics. Journal of Cancer Research, 2019; 145(3): 523-534.
- 35. Sun, X., Li, H., & Yang, X. Targeted metabolomics of kidney cancer using LC-MS reveals potential biomarkers for early detection and treatment monitoring. Metabolomics, 2022; 18(5): 35-48.
- 36. Tan, J., Wang, C., & Zheng, L. LC-MS-based metabolomics reveals the impact of sunitinib analogs on renal cancer cell metabolism. Journal of Chromatography A, 2020; 1612: 460645.
- 37. Wang, H., Li, Y., & Guo, X. Quantitative LC-MS analysis of sunitinib-induced metabolic changes in renal cell carcinoma. Journal of Cancer Metabolism, 2021; 9(2): 134-145.
- 38. Yang, F., & Yu, G. Profiling metabolic alterations in renal cancer cells treated with lenvatinib using LC-MS/MS. Biochimica et Biophysica Acta (BBA) -Molecular Basis of Disease, 2019; 1865(10): 2636-2645.
- 39. Zhang, L., Chen, S., & Wang, W. LC-MS-based metabolomics reveals metabolic reprogramming in renal cancer cells treated with pazopanib. Cancer Metabolomics Research, 2020; 12(6): 256-270.