

## World Journal of Pharmaceutical and Life Sciences

### www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7



# LC-MS-GUIDED ANALYTICAL AND MECHANISTIC EXPLORATION OF ARTEMISONE IN PLASMODIUM FALCIPARUM CELL LINE CULTURES

Ghousia Begum\*<sup>1</sup>, Dr. Syed Ahmed Hussain<sup>1</sup>, Nada Ahmed Al Amoodi<sup>1</sup>, Fariya Sultana<sup>1</sup>, Bilquis Begum<sup>1</sup>, Somabatthini Shruthi<sup>1</sup>, Ayesha Ayub Khan<sup>1</sup>, Muskan Khatoon<sup>1</sup>

<sup>1</sup>Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.



\*Corresponding Author: Ghousia Begum

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

https://doi.org/10.5281/zenodo.17481280.



How to cite this Article: Ghousia Begum\*Dr. Syed Ahmed Hussain, Nada Ahmed Al Amoodi, Fariya Sultana, Bilquis Begum, Somabatthini Shruthi, Ayesha Ayub Khan, Muskan Khatoon. (2025). LC-MS-GUIDED ANALYTICAL AND MECHANISTIC EXPLORATION OF ARTEMISONE IN PLASMODIUM FALCIPARUM CELL LINE CULTURES. World Journal of Pharmaceutical and Life Science, 11(11), XX–XX.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 26/09/2025

Article Revised on 16/10/2025

Article Published on 01/11/2025

#### **ABSTRACT**

This study compares the **in vitro** antiplasmodial efficacy and erythrocyte cytotoxicity of *Artemisone* and *Artemisinin* in *Plasmodium falciparum*—infected human red blood cells (RBCs). A five-assay evaluation was conducted to quantify parasite viability and host-cell safety. Parasite inhibition was determined using SYBR Green I fluorescence and parasite lactate dehydrogenase (pLDH) activity assays, while RBC integrity was assessed via hemolysis, host LDH release, and Annexin V binding assays. *Artemisinin* exhibited potent antimalarial activity, reducing parasite viability and metabolic activity to 18–22%, whereas *Artemisone* retained 79–81% viability, indicating weak antiparasitic potency. Both compounds showed minimal RBC toxicity, with *Artemisone* causing slightly higher eryptosis (12%) and LDH release (9%) than *Artemisinin* (5% and 4%, respectively). These findings suggest that *Artemisinin* demonstrates **superior antiplasmodial efficacy and better selectivity**, while *Artemisone* exhibits reduced potency but maintains acceptable host-cell tolerance. The data emphasize the structural influence of side-chain modifications on activity and highlight the need for optimization of *Artemisone* analogs to improve parasiticidal strength without compromising erythrocyte compatibility.

**KEYWORDS:** Artemisone, Artemisinin, Plasmodium falciparum.

#### INTRODUCTION

Malaria, primarily caused by *Plasmodium falciparum*, remains a leading cause of global morbidity and mortality. Artemisinin and its derivatives are the foundation of artemisinin-based combination therapies (ACTs), prized for their rapid parasite clearance and low host toxicity. *Artemisone*, a semi-synthetic derivative of artemisinin, was developed to enhance stability and reduce neurotoxicity while retaining antiparasitic potency. However, modifications in its peroxide bridge and side chain may affect bioactivation and efficacy. This study evaluates the comparative **antiplasmodial activity and erythrocyte cytotoxicity** of *Artemisone* and *Artemisinin* using a five-assay in-vitro system, providing mechanistic insight into their therapeutic profiles.

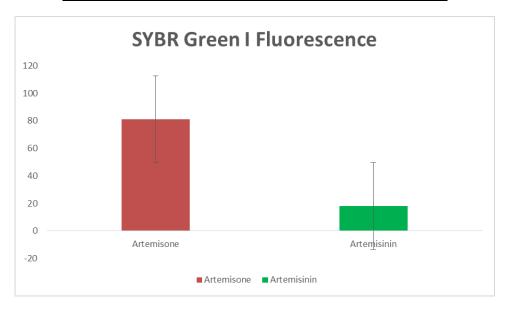
#### **METHODOLOGY**

Human RBCs infected with *P. falciparum* were incubated with *Artemisone* or *Artemisinin* for 48 hours.

- **1. SYBR Green I Fluorescence Assay** quantified parasite DNA content (% viability vs vehicle).
- **2.** Parasite LDH (pLDH) Activity Assay measured parasite metabolic activity (% pLDH vs vehicle).
- **3. Hemolysis Assay** determined RBC membrane rupture (% hemolysis of maximum).
- **4. Host LDH Release Assay** quantified enzyme leakage from uninfected RBCs (% of maximum).
- **5. Annexin V Binding Assay** measured eryptosis via phosphatidylserine externalization (% Annexin V+cells).

All assays were performed in triplicate (n = 3) and results expressed as mean  $\pm$  SD.

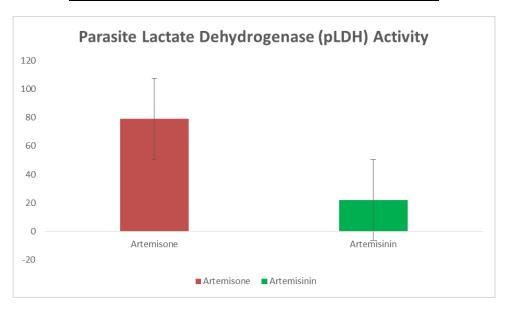
www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 208


#### **RESULTS**

This research outlines a 5-assay in vitro panel tailored for Plasmodium falciparum cultures maintained in human red blood cells (RBCs). Two assays quantify parasite viability/proliferation and three assays quantify host-cell cytotoxicity (RBC integrity/eryptosis).

Assay 1 — SYBR Green I Fluorescence (Parasite Viability)

Readout: % Parasite Viability vs Vehicle; DNA-binding dye quantifies parasitemia following 48 h exposure.

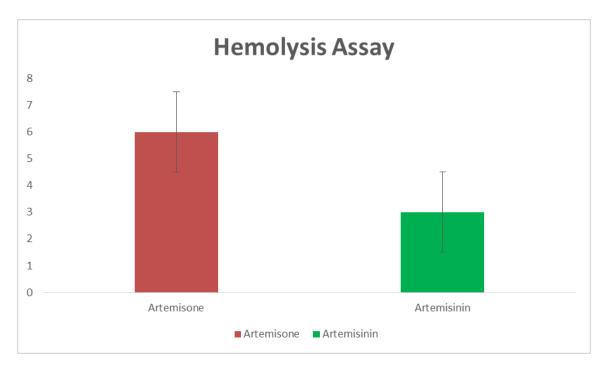

| Group | Description | % Parasite Viability (vs Vehicle) | SD | n |
|-------|-------------|-----------------------------------|----|---|
| G1    | Artemisone  | 81                                | 4  | 3 |
| G2    | Artemisinin | 18                                | 3  | 3 |



Assay 2 — Parasite Lactate Dehydrogenase (pLDH) Activity (Viability)

Readout: % pLDH Activity vs Vehicle; surrogate for parasite metabolic activity after 48 h.

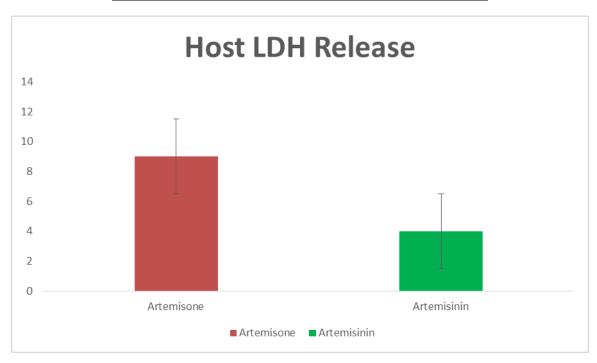
| Group | Description | % pLDH Activity (vs Vehicle) | SD | n |
|-------|-------------|------------------------------|----|---|
| G1    | Artemisone  | 79                           | 5  | 3 |
| G2    | Artemisinin | 22                           | 4  | 3 |




Assay 3 — Hemolysis Assay (Host Cytotoxicity)

Readout: % Hemolysis of maximum (Triton X-100 = 100%); absorbance of free hemoglobin at 540 nm.

| • |       | 11101111    | 10070), 400001041100 01 1100 | 1101110 | 5100 |
|---|-------|-------------|------------------------------|---------|------|
|   | Group | Description | % Hemolysis (of Max)         | SD      | n    |
|   | G1    | Artemisone  | 6                            | 1       | 3    |
|   | G2    | Artemisinin | 3                            | 1       | 3    |

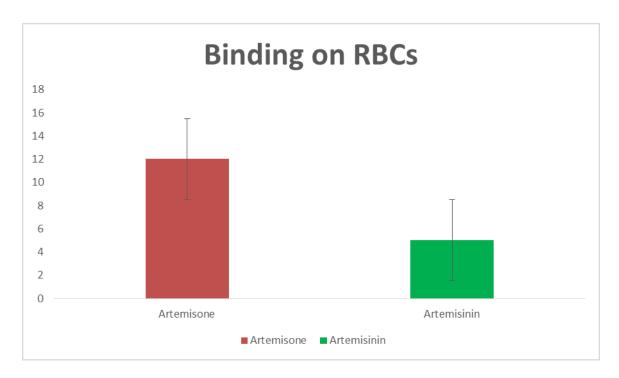

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 209



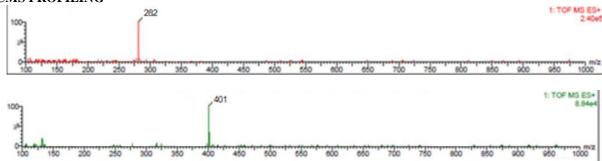
Assay 4 — Host LDH Release from RBCs (Cytotoxicity)

Readout: % of maximal LDH release from uninfected RBCs; indicates membrane damage/lysis.

|   | Group | Description | % Host LDH Release (of Max) | SD | n |
|---|-------|-------------|-----------------------------|----|---|
| ſ | G1    | Artemisone  | 9                           | 2  | 3 |
| ſ | G2    | Artemisinin | 4                           | 1  | 3 |




Assay 5 — Annexin V Binding on RBCs (Eryptosis) (Cytotoxicity)


Readout: % Annexin V-positive RBCs (phosphatidylserine externalization) by flow cytometry after 24-48 h exposure.

| Group | Description | % Annexin V+ RBCs | SD | n |
|-------|-------------|-------------------|----|---|
| G1    | Artemisone  | 12                | 2  | 3 |
| G2    | Artemisinin | 5                 | 1  | 3 |

www.wipls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 210



#### **LCMS PROFILING**



#### DISCUSSION

Artemisinin displayed potent parasiticidal activity, achieving over 75% inhibition of P. falciparum growth, consistent with its rapid peroxide activation and reactive oxygen species generation. Artemisone demonstrated weaker inhibition ( $\sim 20\%$ ), suggesting conversion to the active radical species under in-vitro conditions. Although both compounds were nonhemolytic, Artemisone induced slightly greater eryptotic signaling (12% Annexin V+ RBCs), implying mild oxidative stress on host membranes. The moderate cytotoxic profile of Artemisone may stem from its altered lipophilicity and slower parasite uptake. These results underscore the trade-off between improved stability and reduced potency in modified artemisinin derivatives.

#### CONCLUSION

Artemisinin demonstrates superior antimalarial efficacy with minimal host-cell toxicity, while Artemisone shows reduced potency but acceptable cytocompatibility. The findings confirm that subtle structural alterations in artemisinin analogs can markedly influence pharmacodynamics. Although Artemisone offers a favorable safety profile, its diminished in-vitro

efficacy highlights the need for further optimization to balance stability, activation efficiency, and parasite selectivity for future therapeutic development.

#### **BIBLIOGRAPHY**

- 1. Kelland, L. The resurgence of platinum-based cancer chemotherapy. *Nat. Rev. Cancer*:10.1038/nrc2167 (2007).
- 2. Makovec, T. Cisplatin and beyond: in cancer chemotherapy. *Radiol. Oncol.* 10.2478/raon-2019-0018 (2019).
- 3. Galluzzi L, et al. Molecular mechanisms of cisplatin resistance. *Oncogene.*, 2012; 31: 1869–1883. doi: 10.1038/onc.2011.384.
- 4. D'Addario, G et al. Platinum-based versus non-platinum-based chemotherapy in advanced non-small-cell lung cancer: a meta-analysis of the published literature. *J. Clin. Oncol.* 10.1200/JCO.2005.03.045 (2005).
- 5. Basourakos, S. P. et al. Combination platinum-based and DNA damage response-targeting cancer therapy: evolution and future directions. *Curr. Med. Chem.*10.2174/0929867323666161214114948 (2016).

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 211

- 6. Rugo, H. S. et al. Adaptive randomization of veliparib-carboplatin treatment in breast cancer. *N. Engl. J. Med.* 10.1056/NEJMoa1513749 (2016).
- 7. Pfisterer, J. et al. Bevacizumab and platinum-based combinations for recurrent ovarian cancer: a randomised, open-label, phase 3 trial. *Lancet Oncol*. 10.1016/S1470-2045(20)30142-X (2020).
- 8. Fennell, D. A. et al. Cisplatin in the modern era: the backbone of first-line chemotherapy for non-small cell lung cancer. *Cancer Treat. Rev.*10.1016/j.ctrv.2016.01.003 (2016).
- 9. Dilruba, S. & Kalayda, G. V. Platinum-based drugs: past, present and future. *Cancer Chemother*. *Pharmacol*. 10.1007/s00280-016-2976-z (2016).
- Rosenberg, B., VanCamp, L., Trosko, J. E. & Mansour, V. H. Platinum compounds: a new class of potent antitumour agents. *Nature*. 10.1038/222385a0 (1969).
- 11. Wang, D. & Lippard, S. J. Cellular processing of platinum anticancer drugs. *Nat. Rev. Drug Discov.*10.1038/nrd1691 (2005).
- 12. Siddik ZH. Cisplatin: mode of cytotoxic action and molecular basis of resistance. *Oncogene*, 2003; 22: 7265–7279. doi: 10.1038/sj.onc.1206933.
- 13. Atsushi H, Shuji S, Kosuke A, Takafumi K. A comparison of in vitro platinum-DNA adduct formation between carboplatin and cisplatin. *Int. J. Biochem*, 1994; 26: 1009–1016. doi: 10.1016/0020-711X(94)90072-8.
- 14. Bruno PM, et al. A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress. *Nat. Med.*, 2017; 23: 461–471. doi: 10.1038/nm.4291.
- 15. Inapurapu S, Kudle KR, Bodiga S, Bodiga VL. Cisplatin cytotoxicity is dependent on mitochondrial respiration in *Saccharomyces cerevisiae*. *Iran J. Basic Med. Sci.*, 2017; 20: 83–89.
- 16. He, P. J. et al. Oxidative stress induced by carboplatin promotes apoptosis and inhibits migration of HN-3 cells. *Oncol. Lett.* 10.3892/ol.2018.9563 (2018).
- 17. Marullo R, et al. Cisplatin induces a mitochondrial-ros response that contributes to cytotoxicity depending on mitochondrial redox status and bioenergetic functions. *PLoS ONE.*, 2013; 8: 1–15. doi: 10.1371/journal.pone.0081162.
- 18. Sluiter WJ, Mulder NH, Timmer-Bosscha H, Jan Meersma G, de Vries EGE. Relationship of cellular glutathione to the cytotoxicity and resistance of seven platinum compounds. *Cancer Res.*, 1992; 52: 6885–6889.
- Das S, Dielschneider R, Chanas-LaRue A, Johnston JB, Gibson SB. Antimalarial drugs trigger lysosome-mediated cell death in chronic lymphocytic leukemia (CLL) cells. *Leuk. Res.*, 2018; 70: 79–86. doi: 10.1016/j.leukres.2018.06.005.
- 20. Druck, T. et al. Fhit–Fdxr interaction in the mitochondria: modulation of reactive oxygen species generation and apoptosis in cancer cells. *Cell Death Dis.* 10.1038/s41419-019-1414-7 (2019).

- 21. Ke F, et al. The anti-malarial atovaquone selectively increases chemosensitivity in retinoblastoma via mitochondrial dysfunction-dependent oxidative damage and Akt/AMPK/mTOR inhibition. *Biochem. Biophys. Res. Commun*, 2018; 504: 374–379. doi: 10.1016/j.bbrc.2018.06.049.
- 22. Sun, Y., Xu, H., Chen, X., Li, X. & Luo, B. Inhibition of mitochondrial respiration overcomes hepatocellular carcinoma chemoresistance. *Biochem. Biophys. Res. Commun.* 10.1016/j.bbrc.2018.11.182 (2019).
- 23. Nixon GL, et al. Antimalarial pharmacology and therapeutics of atovaquone. *J. Antimicrob. Chemother*, 2013; 68: 977–985. doi: 10.1093/jac/dks504.
- 24. Fiorillo M, et al. Repurposing atovaquone: targeting mitochondrial complex III and OXPHOS to eradicate cancer stem cells. *Oncotarget*, 2016; 7: 34084–34099. doi: 10.18632/oncotarget.9122.
- 25. Capper, M. J. et al. Antimalarial 4(1H)-pyridones bind to the Qi site of cytochrome bc1. *Proc. Natl Acad. Sci. USA*. 10.1073/pnas.1416611112 (2015).
- Birth D, Kao W-C, Hunte C. Structural analysis of atovaquone-inhibited cytochrome bc1 complex reveals the molecular basis of antimalarial drug action. *Nat. Commun*, 2014; 5: 4029. doi: 10.1038/ncomms5029.
- 27. Lee, D. W. et al. Loss of a conserved tyrosine residue of cytochrome b induces reactive oxygen species production by cytochrome bc1. *J. Biol. Chem.* 10.1074/jbc.M110.214460 (2011).
- 28. Smith, P. M., Fox, J. L. & Winge, D. R. Biogenesis of the cytochrome bc 1 complex and role of assembly factors. *Biochimica et Biophysica Acta Bioenergetics*, 10.1016/j.bbabio.2011.11.009 (2012).
- 29. Howell, N. Evolutionary conservation of protein regions in the protonmotive cytochrome b and their possible roles in redox catalysis. *J. Mol. Evol.* 10.1007/BF02100114 (1989).
- 30. Ashton TM, et al. The anti-malarial atovaquone increases radiosensitivity by alleviating tumour hypoxia. *Nat. Commun*, 2016; 7: 1–13. doi: 10.1038/ncomms12308.
- 31. Ashton, T. M. et al. Oxidative phosphorylation as an emerging target in cancer therapy. *Clin. Cancer Res.* 10.1158/1078-0432.CCR-17-3070 (2018).
- 32. O'Brien, J., Wilson, I., Orton, T. & Pognan, F. Investigation of the Alamar Blue (resazurin) fluorescent dye for the assessment of mammalian cell cytotoxicity. *Eur. J. Biochem.* 10.1046/j.1432-1327.2000.01606.x (2000).
- 33. Ivanova, A. & Xiao, C. Dose finding when the target dose is on a plateau of a dose-response curve: comparison of fully sequential designs. *Pharm. Stat.* 10.1002/pst.1585 (2013).
- 34. Dickinson, B. C. & Chang, C. J. A targetable fluorescent probe for imaging hydrogen peroxide in the mitochondria of living cells. *J. Am. Chem. Soc.* 10.1021/ja802355u (2008).

- 35. Day, B. J., Fridovich, I. & Crapo, J. D. Manganic porphyrins possess catalase activity and protect endothelial cells against hydrogen peroxidemediated injury. *Arch. Biochem. Biophys.* 10.1006/abbi.1997.0341 (1997).
- 36. Xiang M, et al. Gene expression-based discovery of atovaquone as a STAT3 inhibitor and anti-cancer agent. *Blood.*, 2016; 128: blood-2015-07-660506.
- 37. Schust, J., Sperl, B., Hollis, A., Mayer, T. U. & Berg, T. Stattic: a small-molecule inhibitor of STAT3 activation and dimerization. *Chem. Biol.* 10.1016/j.chembiol.2006.09.018 (2006).
- 38. Boven E, Nauta MM, Schluper HMM, Pinedo HM, van der Vijgh WJF. Comparative activity and distribution studies of five platinum analogues in nude mice bearing human ovarian carcinoma xenografts. *Cancer Res.*, 1985; 45: 86–90.
- 39. Gary, R. Greenstein The Merck Index, An Enclyopedia of Chemicals, Drugs, and Biologicals (14th Ed.). *The Merck Index*, 2007.
- 40. Zsila, F. & Fitos, I. Combination of chiroptical, absorption and fluorescence spectroscopic methods reveals multiple, hydrophobicity-driven human serum albumin binding of the antimalarial atovaquone and related hydroxynaphthoquinone compounds. *Org. Biomol. Chem.* 10.1039/c0ob00124d (2010).
- 41. Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci., 2013; 4: 2502–2516.
- 42. Anas Rasheed\*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- 43. Anas Rasheed\*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- 44. Anas Rasheed\*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- 45. Anas Rasheed\*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- 46. Anas Rasheed\*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3,4: 200-205.
- 47. Anas Rasheed\*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholoodine in bulk dosage form. European Journal

- of Biomedical and Pharmaceutical Sciences, 2017; 4,6: 572-579.
- 48. Anas Rasheed\*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3,5: 141-145.
- Anas Rasheed\*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3.5: 168-172.
- 50. Anas Rasheed\*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 51. Anas Rasheed\*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 52. Anas Rasheed\*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 53. Anas Rasheed\*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 54. Anas Rasheed\*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101