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INTRODUCTION 

Malaria, primarily caused by Plasmodium falciparum, 

remains a leading cause of global morbidity and 

mortality. Artemisinin and its derivatives are the 

foundation of artemisinin-based combination therapies 

(ACTs), prized for their rapid parasite clearance and low 

host toxicity. Artemisone, a semi-synthetic derivative of 

artemisinin, was developed to enhance stability and 

reduce neurotoxicity while retaining antiparasitic 

potency. However, modifications in its peroxide bridge 

and side chain may affect bioactivation and efficacy. This 

study evaluates the comparative antiplasmodial activity 

and erythrocyte cytotoxicity of Artemisone and 

Artemisinin using a five-assay in-vitro system, providing 

mechanistic insight into their therapeutic profiles. 

 

 

 

METHODOLOGY 

Human RBCs infected with P. falciparum were 

incubated with Artemisone or Artemisinin for 48 hours. 

1. SYBR Green I Fluorescence Assay – quantified 

parasite DNA content (% viability vs vehicle). 

2. Parasite LDH (pLDH) Activity Assay – measured 

parasite metabolic activity (% pLDH vs vehicle). 

3. Hemolysis Assay – determined RBC membrane 

rupture (% hemolysis of maximum). 

4. Host LDH Release Assay – quantified enzyme 

leakage from uninfected RBCs (% of maximum). 

5. Annexin V Binding Assay – measured eryptosis via 

phosphatidylserine externalization (% Annexin V+ 

cells). 

 

All assays were performed in triplicate (n = 3) and 

results expressed as mean ± SD. 
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ABSTRACT 

This study compares the in vitro antiplasmodial efficacy and erythrocyte cytotoxicity of Artemisone and 

Artemisinin in Plasmodium falciparum–infected human red blood cells (RBCs). A five-assay evaluation was 

conducted to quantify parasite viability and host-cell safety. Parasite inhibition was determined using SYBR Green 

I fluorescence and parasite lactate dehydrogenase (pLDH) activity assays, while RBC integrity was assessed via 

hemolysis, host LDH release, and Annexin V binding assays. Artemisinin exhibited potent antimalarial activity, 

reducing parasite viability and metabolic activity to 18–22%, whereas Artemisone retained 79–81% viability, 

indicating weak antiparasitic potency. Both compounds showed minimal RBC toxicity, with Artemisone causing 

slightly higher eryptosis (12%) and LDH release (9%) than Artemisinin (5% and 4%, respectively). These findings 

suggest that Artemisinin demonstrates superior antiplasmodial efficacy and better selectivity, while Artemisone 

exhibits reduced potency but maintains acceptable host-cell tolerance. The data emphasize the structural influence 

of side-chain modifications on activity and highlight the need for optimization of Artemisone analogs to improve 

parasiticidal strength without compromising erythrocyte compatibility. 
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RESULTS 

This research outlines a 5-assay in vitro panel tailored for 

Plasmodium falciparum cultures maintained in human 

red blood cells (RBCs). Two assays quantify parasite 

viability/proliferation and three assays quantify host-cell 

cytotoxicity (RBC integrity/eryptosis).   

 

Assay 1 — SYBR Green I Fluorescence (Parasite Viability) 

Readout: % Parasite Viability vs Vehicle; DNA-binding dye quantifies parasitemia following 48 h exposure. 

Group Description % Parasite Viability (vs Vehicle) SD n 

G1 Artemisone 81 4 3 

G2 Artemisinin 18 3 3 

 

 
 

Assay 2 — Parasite Lactate Dehydrogenase (pLDH) Activity (Viability) 

Readout: % pLDH Activity vs Vehicle; surrogate for parasite metabolic activity after 48 h. 

Group Description % pLDH Activity (vs Vehicle) SD n 

G1 Artemisone 79 5 3 

G2 Artemisinin 22 4 3 

 

 
 

Assay 3 — Hemolysis Assay (Host Cytotoxicity) 

Readout: % Hemolysis of maximum (Triton X-100 = 100%); absorbance of free hemoglobin at 540 nm. 

Group Description % Hemolysis (of Max) SD n 

G1 Artemisone 6 1 3 

G2 Artemisinin 3 1 3 
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Assay 4 — Host LDH Release from RBCs (Cytotoxicity) 

Readout: % of maximal LDH release from uninfected RBCs; indicates membrane damage/lysis. 

Group Description % Host LDH Release (of Max) SD n 

G1 Artemisone 9 2 3 

G2 Artemisinin 4 1 3 

 

 
 

Assay 5 — Annexin V Binding on RBCs (Eryptosis) (Cytotoxicity) 

Readout: % Annexin V–positive RBCs (phosphatidylserine externalization) by flow cytometry after 24–48 h exposure. 

Group Description % Annexin V+ RBCs SD n 

G1 Artemisone 12 2 3 

G2 Artemisinin 5 1 3 
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DISCUSSION 

Artemisinin displayed potent parasiticidal activity, 

achieving over 75% inhibition of P. falciparum growth, 

consistent with its rapid peroxide activation and reactive 

oxygen species generation. Artemisone demonstrated 

weaker inhibition (~20%), suggesting reduced 

conversion to the active radical species under in-vitro 

conditions. Although both compounds were non-

hemolytic, Artemisone induced slightly greater eryptotic 

signaling (12% Annexin V+ RBCs), implying mild 

oxidative stress on host membranes. The moderate 

cytotoxic profile of Artemisone may stem from its altered 

lipophilicity and slower parasite uptake. These results 

underscore the trade-off between improved stability 

and reduced potency in modified artemisinin 

derivatives. 

 

CONCLUSION 

Artemisinin demonstrates superior antimalarial 

efficacy with minimal host-cell toxicity, while 

Artemisone shows reduced potency but acceptable 

cytocompatibility. The findings confirm that subtle 

structural alterations in artemisinin analogs can markedly 

influence pharmacodynamics. Although Artemisone 

offers a favorable safety profile, its diminished in-vitro 

efficacy highlights the need for further optimization to 

balance stability, activation efficiency, and parasite 

selectivity for future therapeutic development. 
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