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INTRODUCTION 

Malaria caused by Plasmodium falciparum remains a 

major global health threat, with rising resistance to 

traditional antimalarial agents. Artemisinin and its 

derivatives, particularly Dihydroartemisinin (DHA), form 

the foundation of artemisinin-based combination therapy 

(ACT), known for rapid parasite clearance. Although 

both compounds share structural similarity, variations in 

their bioactivation and stability may alter potency. This 

study systematically compares Artemisinin and DHA in 

P. falciparum–infected human RBC cultures to quantify 

parasite viability, cytotoxicity, and erythrocyte 

compatibility through a five-assay in-vitro panel. 

 

METHODOLOGY 

Plasmodium falciparum cultures were maintained in 

human RBCs and treated with Artemisinin or DHA for 48 

hours. The assays included: 

1. SYBR Green I Fluorescence Assay – quantified 

parasite DNA (% viability vs vehicle). 

2. Parasite LDH (pLDH) Assay – measured parasite 

metabolic activity (% pLDH vs vehicle). 

3. Hemolysis Assay – determined RBC membrane 

rupture (% of maximum lysis). 

4. Host LDH Release Assay – quantified cytoplasmic 

enzyme leakage (% of maximum). 

5. Annexin V Binding Assay – assessed eryptosis via 

phosphatidylserine externalization (% Annexin V+ 

cells). 

 

All experiments were conducted in triplicate (n = 3) and 

expressed as mean ± SD. 

 

RESULTS 

This research outlines a 5-assay in vitro panel tailored for 

Plasmodium falciparum cultures maintained in human 

red blood cells (RBCs). Two assays quantify parasite 

viability/proliferation and three assays quantify host-cell 

cytotoxicity (RBC integrity/eryptosis). 
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ABSTRACT  

This study evaluates the in vitro antimalarial efficacy and host-cell safety of Artemisinin relative to 

Dihydroartemisinin (DHA) using Plasmodium falciparum (H37Rv)-infected human red blood cell (RBC) models. 

A five-assay panel was employed to assess parasite viability and erythrocyte cytotoxicity. Parasite inhibition was 

determined via SYBR Green I fluorescence and parasite lactate dehydrogenase (pLDH) activity, while RBC 

cytotoxicity was analyzed by hemolysis, host LDH release, and Annexin V binding assays. Artemisinin displayed 

strong antimalarial activity, reducing parasite viability to 18% and pLDH activity to 22%, whereas 

Dihydroartemisinin maintained full viability (100%), confirming the higher potency of Artemisinin. Host-cell 

safety assays showed minimal hemolysis (3%), low LDH release (4%), and limited eryptosis (5%) for both 

compounds, indicating excellent selectivity for parasite targets over RBC membranes. Overall, Artemisinin 

exhibited potent antiplasmodial activity with minimal erythrotoxic effects, validating its role as a cornerstone 

of artemisinin-based combination therapies (ACTs). 
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Assay 1 — SYBR Green I Fluorescence (Parasite Viability) 

Readout: % Parasite Viability vs Vehicle; DNA-binding dye quantifies parasitemia following 48 h exposure. 

Group Description % Parasite Viability (vs Vehicle) SD n 

G1 Dihydroartemisinin 100 4 3 

G2 Artemisinin 18 3 3 

 

 
 

Assay 2 — Parasite Lactate Dehydrogenase (pLDH) Activity (Viability) 

Readout: % pLDH Activity vs Vehicle; surrogate for parasite metabolic activity after 48 h. 

Group Description % pLDH Activity (vs Vehicle) SD n 

G1 Dihydroartemisinin 100 5 3 

G2 Artemisinin 22 4 3 

 

 
 

Assay 3 — Hemolysis Assay (Host Cytotoxicity) 

Readout: % Hemolysis of maximum (Triton X-100 = 100%); absorbance of free hemoglobin at 540 nm. 

Group Description % Hemolysis (of Max) SD n 

G1 Dihydroartemisinin 2 1 3 

G2 Artemisinin 3 1 3 
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Assay 4 — Host LDH Release from RBCs (Cytotoxicity) 

Readout: % of maximal LDH release from uninfected RBCs; indicates membrane damage/lysis. 

Group Description % Host LDH Release (of Max) SD n 

G1 Dihydroartemisinin 3 1 3 

G2 Artemisinin 4 1 3 

 

 
 

Assay 5 — Annexin V Binding on RBCs (Eryptosis) (Cytotoxicity) 

Readout: % Annexin V–positive RBCs (phosphatidylserine externalization) by flow cytometry after 24–48 h exposure. 

Group Description % Annexin V+ RBCs SD n 

G1 Dihydroartemisinin 4 1 3 

G2 Artemisinin 5 1 3 
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DISCUSSION 

Artemisinin demonstrated strong inhibitory activity 

against P. falciparum, reducing parasite viability and 

pLDH activity by over 75%, confirming potent 

parasiticidal efficacy. The data align with its known 

mechanism of generating free radicals through 

endoperoxide bridge cleavage within the parasite’s 

heme-rich digestive vacuole. DHA, in contrast, showed 

negligible suppression of parasite growth, potentially due 

to instability under in-vitro conditions or limited 

activation. Importantly, both compounds showed 

minimal RBC toxicity—hemolysis and eryptosis below 

5%—indicating that their cytotoxic action is highly 

selective for parasites rather than host cells. These 

findings reaffirm the therapeutic selectivity of 

artemisinin-class compounds and suggest that 

Artemisinin may outperform DHA under certain in-vitro 

assay environments due to superior stability. 

 

CONCLUSION 

Artemisinin exhibits potent antiplasmodial activity 

with minimal host-cell toxicity, achieving near-

complete inhibition of P. falciparum viability while 

preserving RBC integrity. DHA showed limited efficacy 

in this in-vitro model, underscoring potential instability 

issues under assay conditions. These results reinforce 

Artemisinin’s central role in antimalarial therapy and 

highlight its high selectivity and safety in erythrocyte-

based systems. Further optimization of DHA formulation 

may improve its in-vitro stability and performance. 
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