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ABSTRACT

This study evaluates the in vitro antimalarial efficacy and host-cell safety of Artemisinin relative to
Dihydroartemisinin (DHA) using Plasmodium falciparum (H37Rv)-infected human red blood cell (RBC) models.
A five-assay panel was employed to assess parasite viability and erythrocyte cytotoxicity. Parasite inhibition was
determined via SYBR Green | fluorescence and parasite lactate dehydrogenase (pLDH) activity, while RBC
cytotoxicity was analyzed by hemolysis, host LDH release, and Annexin V binding assays. Artemisinin displayed
strong antimalarial activity, reducing parasite viability to 18% and pLDH activity to 22%, whereas
Dihydroartemisinin maintained full viability (100%), confirming the higher potency of Artemisinin. Host-cell
safety assays showed minimal hemolysis (3%), low LDH release (4%), and limited eryptosis (5%) for both
compounds, indicating excellent selectivity for parasite targets over RBC membranes. Overall, Artemisinin
exhibited potent antiplasmodial activity with minimal erythrotoxic effects, validating its role as a cornerstone
of artemisinin-based combination therapies (ACTS).
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INTRODUCTION 2.
Malaria caused by Plasmodium falciparum remains a
major global health threat, with rising resistance to 3.
traditional antimalarial agents. Artemisinin and its
derivatives, particularly Dihydroartemisinin (DHA), form 4.
the foundation of artemisinin-based combination therapy
(ACT), known for rapid parasite clearance. Although 5.
both compounds share structural similarity, variations in
their bioactivation and stability may alter potency. This
study systematically compares Artemisinin and DHA in
P. falciparum—infected human RBC cultures to quantify
parasite  viability, cytotoxicity, and erythrocyte
compatibility through a five-assay in-vitro panel.

Parasite LDH (pLDH) Assay — measured parasite
metabolic activity (% pLDH vs vehicle).

Hemolysis Assay — determined RBC membrane
rupture (% of maximum lysis).

Host LDH Release Assay — quantified cytoplasmic
enzyme leakage (% of maximum).

Annexin V Binding Assay — assessed eryptosis via
phosphatidylserine externalization (% Annexin V+
cells).

All experiments were conducted in triplicate (n = 3) and
expressed as mean + SD.

RESULTS

METHODOLOGY

Plasmodium falciparum cultures were maintained in

human RBCs and treated with Artemisinin or DHA for 48

hours. The assays included:

1. SYBR Green | Fluorescence Assay — quantified
parasite DNA (% viability vs vehicle).

This research outlines a 5-assay in vitro panel tailored for
Plasmodium falciparum cultures maintained in human
red blood cells (RBCs). Two assays quantify parasite
viability/proliferation and three assays quantify host-cell
cytotoxicity (RBC integrity/eryptosis).
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Assay 1 — SYBR Green | Fluorescence (Parasite Viability)

Readout: % Parasite Viability vs Vehicle; DNA-binding dye quantifies parasitemia following 48 h exposure.
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Group | Description % Parasite Viability (vs Vehicle) | SD | n
Gl Dihydroartemisinin 100 4 3
G2 Artemisinin 18 3 3
SYBR Green | Fluorescence
Dihydroartemisinin Ar‘te{isinin
m Dihydroartemisinin  ® Artemisinin
Assay 2 — Parasite Lactate Dehydrogenase (pLDH) Activity (Viability)
Readout: % pLDH Activity vs Vehicle; surrogate for parasite metabolic activity after 48 h.
Group | Description % pLDH Activity (vs Vehicle) | SD | n
Gl Dihydroartemisinin 100 5 3
G2 Artemisinin 22 4 3
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Assay 3 — Hemolysis Assay (Host Cytotoxicity)

Readout: % Hemolysis of maximum (Triton X-100 = 100%); absorbance of free hemoglobin at 540 nm.

Group | Description % Hemolysis (of Max) | SD | n
Gl Dihydroartemisinin 2 1 3
G2 Artemisinin 3 1 3
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Assay 4 — Host LDH Release from RBCs (Cytotoxicity)

Readout: % of maximal LDH release from uninfected RBCs; indicates membrane damage/lysis.

Group | Description % Host LDH Release (of Max) | SD | n
Gl Dihydroartemisinin 3 1 3
G2 Artemisinin 4 1 3
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Assay 5 — Annexin V Binding on RBCs (Eryptosis) (Cytotoxicity)
Readout: % Annexin V—positive RBCs (phosphatidylserine externalization) by flow cytometry after 24—48 h exposure.

Group | Description % AnnexinV+ RBCs | SD | n
Gl Dihydroartemisinin 4 1 3
G2 Artemisinin 5 1 3
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DISCUSSION based systems. Further optimization of DHA formulation

Artemisinin demonstrated strong inhibitory activity
against P. falciparum, reducing parasite viability and
pLDH activity by over 75%, confirming potent
parasiticidal efficacy. The data align with its known
mechanism of generating free radicals through
endoperoxide bridge cleavage within the parasite’s
heme-rich digestive vacuole. DHA, in contrast, showed
negligible suppression of parasite growth, potentially due
to instability under in-vitro conditions or limited
activation. Importantly, both compounds showed
minimal RBC toxicity—hemolysis and eryptosis below
5% —indicating that their cytotoxic action is highly
selective for parasites rather than host cells. These
findings reaffirm the therapeutic selectivity of
artemisinin-class compounds and suggest that
Artemisinin may outperform DHA under certain in-vitro
assay environments due to superior stability.

CONCLUSION

Artemisinin exhibits potent antiplasmodial activity
with minimal host-cell toxicity, achieving near-
complete inhibition of P. falciparum viability while
preserving RBC integrity. DHA showed limited efficacy
in this in-vitro model, underscoring potential instability
issues under assay conditions. These results reinforce
Artemisinin’s central role in antimalarial therapy and
highlight its high selectivity and safety in erythrocyte-

may improve its in-vitro stability and performance.
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