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INTRODUCTION 

Isoniazid (INH) remains a cornerstone of tuberculosis 

(TB) chemotherapy, acting as a prodrug that, upon 

activation by KatG, forms an INH-NAD adduct which 

inhibits InhA, a key enzyme in mycolic acid 

biosynthesis. Although this adduct is central to 

antibacterial action, its reactivity may also contribute to 

host-cell damage and hepatotoxicity. Investigating the 

direct biological effects of the Isoniazid-NAD adduct is 

critical to understanding the mechanistic balance 

between antimicrobial potency and cytotoxic risk. This 

study assesses its intracellular efficacy and cytotoxicity 

relative to INH using a five-assay in-vitro panel in M. 

tuberculosis-infected macrophage cell lines. 

 

METHODOLOGY 

Macrophage cell lines (THP-1 or RAW264.7) were 

infected with M. tuberculosis H37Rv and treated with 

Isoniazid-NAD adduct or INH. The five-assay panel 

included: 

1. REMA/Alamar Blue Assay – bacterial viability (% 

vs vehicle). 

2. Luciferase Bioluminescence Assay – bacterial 

metabolic activity (% RLU vs vehicle). 

3. Annexin V/PI Assay – host-cell apoptosis (% 

apoptotic cells after 48 h). 

4. Caspase-3/7 Activity Assay – apoptotic enzyme 

activation (fold-change vs vehicle). 

5. LDH Release Assay – membrane damage and 

necrosis (% of maximum). 

Each test was performed in triplicate (n = 3) and 

expressed as mean ± SD. 

 

RESULTS 

This research shows a 5‑assay in vitro panel for M. 

tuberculosis–infected cell line models (e.g., THP‑1 or 
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ABSTRACT  

This study evaluates the in vitro antibacterial potency and cytotoxic profile of the Isoniazid-NAD adduct in 

Mycobacterium tuberculosis (H37Rv)–infected macrophage models (THP-1, RAW264.7), compared with the parent 

drug Isoniazid (INH). A five-assay screening panel quantified both bacterial inhibition and host-cell effects. 

Bacterial viability, measured by Resazurin/Alamar Blue and Luciferase Bioluminescence, showed strong inhibition 

by the Isoniazid-NAD adduct (28% and 27% viability) comparable to INH (22% and 25%), confirming its retained 

antibacterial efficacy. However, cytotoxicity assays revealed markedly elevated host apoptosis (34%), caspase-3/7 

activation (2.8-fold), and LDH release (31%), indicating substantial pro-apoptotic and necrotic stress compared to 

INH (10%, 1.2-fold, 9%). These results suggest that while the Isoniazid-NAD adduct maintains potent 

antimycobacterial activity, it exhibits poor host selectivity and heightened macrophage toxicity, likely due to 

excessive reactive intermediate formation or oxidative stress. Overall, its cytotoxic burden limits therapeutic 

viability despite promising bacterial inhibition. 
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RAW264.7 macrophages infected with H37Rv). Two 

assays quantify bacterial viability (REMA/Alamar Blue 

and luciferase bioluminescence) and three assays 

quantify host‑cell cytotoxicity (Annexin V/PI, 

Caspase‑3/7 activity, and LDH release). 

 

Assay 1 — Resazurin Microtiter Assay (REMA/Alamar Blue) for M. tuberculosis Viability 

Readout: % Bacterial Viability vs Vehicle after 5–7 days; normalization = 100 × (Sample − Blank)/(Vehicle − Blank). 

Lower % indicates better antibacterial effect. 

Group Description % Bacterial Viability (vs Vehicle) SD n 

G1 Isoniazid NAD adduct 28 4 3 

G2 Positive control (e.g., INH) 22 4 3 

 

 
 

Assay 2 — Luciferase Bioluminescence (Lux/Luc M. tuberculosis) 

Readout: % Relative Luminescence Units (RLU) vs Vehicle after 5–7 days; surrogate for bacterial metabolic viability. 

Group Description % RLU (vs Vehicle) SD n 

G1 Isoniazid NAD adduct 27 4 3 

G2 Positive control (e.g., INH) 25 5 3 
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Assay 3 — Annexin V / Propidium Iodide (Host Cytotoxicity) 

Readout: % apoptotic (early + late) host cells by flow cytometry after 48 h exposure; higher % indicates more host‑cell 

death. 

Group Description % Apoptotic Host Cells SD n 

G1 Isoniazid NAD adduct 34 5 3 

G2 Positive control (e.g., INH) 10 2 3 

 

 
 

Assay 4 — Caspase‑3/7 Activity in Host Cells (Cytotoxicity) 

Readout: Fold‑change in caspase‑3/7 luminescence vs vehicle after 24–48 h; executioner caspase activation. 

Group Description Fold‑Change vs Vehicle SD n 

G1 Isoniazid NAD adduct 2.8 0.3 3 

G2 Positive control (e.g., INH) 1.2 0.1 3 
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Assay 5 — LDH Release from Host Cells (Cytotoxicity) 

Readout: % of maximum LDH release from uninfected/parallel host cells; indicates membrane damage/necrosis. 

Group Description % LDH Release (of Max) SD n 

G1 Isoniazid NAD adduct 31 5 3 

G2 Positive control (e.g., INH) 9 2 3 

 

 
 

LCMS PROFILING 

 

 
 

DISCUSSION 

The Isoniazid-NAD adduct displayed antibacterial 

activity nearly equivalent to INH, confirming its role as 

the bioactive inhibitory species targeting InhA. However, 

it elicited significantly higher macrophage toxicity, as 

evidenced by increased apoptosis, caspase activation, 

and LDH release. This heightened cytotoxicity may stem 

from excessive redox imbalance or nonspecific 

interaction of the adduct with host NAD-dependent 

enzymes. While INH maintains selective bacterial 

toxicity, the pre-formed adduct bypasses controlled 

activation, causing unregulated cytotoxic stress within 

host cells. Thus, although pharmacologically active, the 

Isoniazid-NAD adduct is unsuitable for direct therapeutic 

use due to its narrow therapeutic window. 

 

CONCLUSION 

The Isoniazid-NAD adduct retains potent anti-M. 

tuberculosis activity but exhibits substantial 

macrophage cytotoxicity, surpassing that of INH. Its 

uncontrolled reactivity and strong apoptotic induction 

suggest limited clinical safety despite effective bacterial 

inhibition. These findings highlight the importance of in 

situ prodrug activation in minimizing host damage and 

reaffirm INH’s advantage as a selectively activated 

agent. Future research should focus on designing 

controlled-release analogs that preserve antibacterial 

potency while mitigating host toxicity. 
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