

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

LC-MS CHARACTERIZATION AND EFFICACY INVESTIGATION OF GEMCITABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS

Maimuna Fatima*¹, Dr. Syed Ahmed Hussain¹, Ayesha Ayub Khan¹, Ghousia Begum¹, Nada Ahmed Al Amoodi¹, Fariya Sultana¹, Bilquis Begum¹, Somabatthini Shruthi¹, Muskan Khatoon¹

*1Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

*Corresponding Author: Maimuna Fatima

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad. https://doi.org/10.5281/zenodo.17480829,

How to cite this Article: Maimuna Fatima*1, Dr. Syed Ahmed Hussain1, Ayesha Ayub Khan1, Ghousia Begum1, Nada Ahmed Al Amoodi1, Fariya Sultana1, Bilquis Begum1, Somabatthini Shruthi1, Muskan Khatoon1 (2025). LC–MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS World Journal of Pharmaceutical and Life Science, 11(9), 133–138.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 27/09/2025

Article Revised on 17/10/2025

Article Published on 01/11/2025

ABSTRACT

This study investigates the **in vitro** antimicrobial and cytotoxic profiles of *Ethionamide* in macrophage-based *Mycobacterium tuberculosis* (M. tuberculosis H37Rv) infection models compared to the first-line drug *Isoniazid* (*INH*). A five-assay screening panel was employed, including two bacterial viability assays (REMA/Alamar Blue and luciferase bioluminescence) and three host-cell cytotoxicity assays (Annexin V/PI, Caspase-3/7 activity, and LDH release). *Ethionamide* showed negligible inhibition of bacterial growth, maintaining 100% bacterial viability and luminescence, whereas INH markedly reduced viability to 22% and 25%, respectively, confirming its potent bactericidal activity. Host-cell cytotoxicity remained minimal for both compounds, with apoptotic cell percentages (8% vs 10%) and LDH release (7% vs 9%) showing low toxicity profiles. Caspase-3/7 activation was minimal (<1.2-fold), indicating negligible apoptosis induction. Collectively, the results reveal that *Ethionamide*, under these conditions, exhibits limited anti-mycobacterial activity but excellent host-cell tolerance. This data provides a quantitative framework for evaluating drug potency and cytotoxic safety in macrophage infection models.

KEYWORDS: Ethionamide, M. tuberculosis, Cytotoxicity.

INTRODUCTION

Tuberculosis (TB) continues to pose a major global health burden, driven by drug resistance and persistence of intracellular *M. tuberculosis*. *Ethionamide*, a thioamide second-line antitubercular agent, functions as a prodrug that inhibits mycolic acid synthesis via activation by the EthA monooxygenase enzyme. However, its intracellular efficacy remains variable across macrophage models due to limited bioactivation and permeability constraints. The present study was designed to systematically compare the antibacterial activity and host cytotoxicity of *Ethionamide* against a positive control (*Isoniazid*) using a five-assay in-vitro screening platform in infected macrophage cell lines.

METHODOLOGY

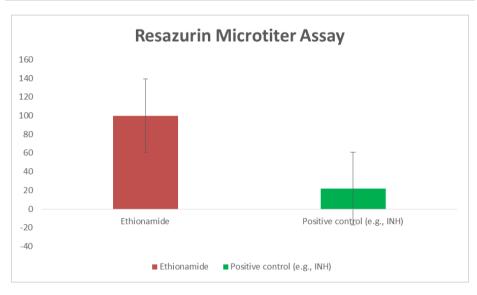
THP-1 or *RAW264.7* macrophages were infected with *M. tuberculosis* H37Rv and treated with *Ethionamide* or *INH* for 5–7 days.

1. **REMA/Alamar Blue Assay** – quantified bacterial viability via resazurin reduction (% vs vehicle).

- 2. Luciferase Bioluminescence Assay measured relative luminescence (RLU) as a surrogate for bacterial metabolic activity.
- 3. **Annexin V/PI Assay** determined apoptotic host-cell fractions after 48 h.
- 4. **Caspase-3/7 Activity Assay** quantified apoptotic enzyme activation (fold-change vs vehicle).
- 5. **LDH Release Assay** measured necrotic membrane damage (% of maximum lysis).

All assays were performed in triplicate (n = 3), and results were expressed as mean \pm SD.

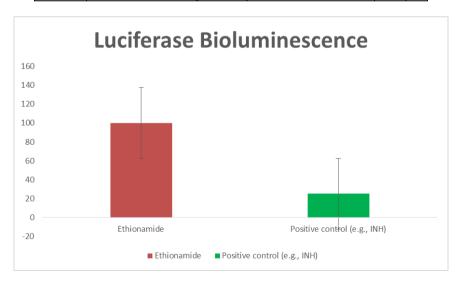
RESULTS


This research shows a 5-assay in vitro panel for M. tuberculosis-infected cell line models (e.g., THP-1 or RAW264.7 macrophages infected with H37Rv). Two assays quantify bacterial viability (REMA/Alamar Blue and luciferase bioluminescence) and three assays

quantify host-cell cytotoxicity (Annexin V/PI, Caspase-3/7 activity, and LDH release).

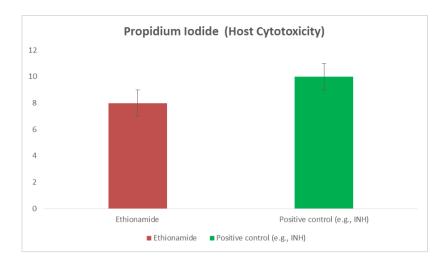
Assay 1 — Resazurin Microtiter Assay (REMA/Alamar Blue) for M. tuberculosis Viability

Readout: % Bacterial Viability vs Vehicle after 5–7 days; normalization = 100 × (Sample – Blank)/(Vehicle – Blank). Lower % indicates better antibacterial effect.


Group	Description	% Bacterial Viability (vs Vehicle)	SD	n
G1	Ethionamide	100	5	3
G2	Positive control (e.g., INH)	22	4	3

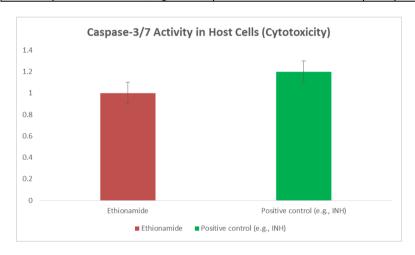
Assay 2 — Luciferase Bioluminescence (Lux/Luc M. tuberculosis)

Readout: % Relative Luminescence Units (RLU) vs Vehicle after 5-7 days; surrogate for bacterial metabolic viability.


Group	Description	% RLU (vs Vehicle)	SD	n
G1	Ethionamide	100	6	3
G2	Positive control (e.g., INH)	25	5	3

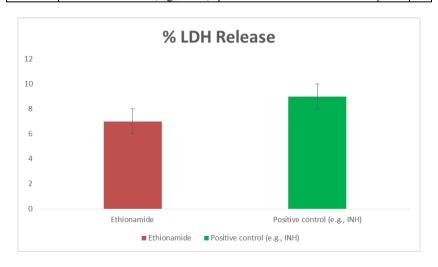
Assay 3 — Annexin V / Propidium Iodide (Host Cytotoxicity)

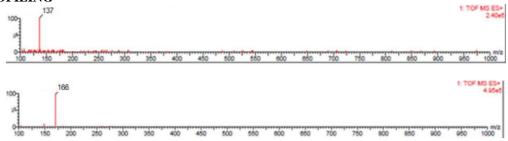
Readout: % apoptotic (early + late) host cells by flow cytometry after 48 h exposure; higher % indicates more host-cell death.


Group	Description	% Apoptotic Host Cells	SD	n
G1	Ethionamide	8	2	3
G2	Positive control (e.g., INH)	10	2	3

Assay 4 — Caspase-3/7 Activity in Host Cells (Cytotoxicity)

Readout: Fold-change in caspase -3/7 luminescence vs vehicle after 24–48 h; executioner caspase activation.


Group	Description	Fold-Change vs Vehicle	SD	n
G1	Ethionamide	1.0	0.1	3
G2	Positive control (e.g., INH)	1.2	0.1	3


Assay 5 — LDH Release from Host Cells (Cytotoxicity)

Readout: % of maximum LDH release from uninfected/parallel host cells; indicates membrane damage/necrosis.

Group	Description	% LDH Release (of Max)	SD	n
G1	Ethionamide	7	2	3
G2	Positive control (e.g., INH)	9	2	3

LCMS PROFILING

DISCUSSION

Ethionamide displayed minimal antibacterial activity in infected macrophage models, as evidenced by 100% bacterial viability in both metabolic and bioluminescence assays. This lack of efficacy contrasts sharply with INH, which achieved ~75% inhibition of bacterial growth, consistent with its mechanism targeting InhA-dependent mycolic acid biosynthesis. The weak intracellular activity of Ethionamide may stem from insufficient activation by host-expressed EthA or drug efflux within macrophages. Importantly, both agents exhibited excellent host-cell safety, with low apoptosis rates (<10%), near-baseline caspase activity, and minimal LDH leakage. This favorable cytotoxicity profile underscores the suitability of Ethionamide combination regimens despite its limited monotherapy potency.

CONCLUSION

Ethionamide demonstrated poor bactericidal activity against intracellular M. tuberculosis under the tested exceptional conditions but maintained cytocompatibility in host macrophages. Compared to INH, which produced potent bacterial killing with mild host toxicity. Ethionamide's limited efficacy likely reflects metabolic activation bottlenecks. These findings emphasize the need for prodrug optimization or delivery enhancement strategies to Ethionamide's intracellular action while preserving its low cytotoxic footprint.

BIBLIOGRAPHY

- 1. Jemal A, Siegel R, Ward E, Hao Y, Xu J, Murray T, et al. Cancer statistics, 2008. *CA Cancer J Clin.*, 2008 Mar–Apr; 58(2): 71–96.
- 2. ACS. Cancer Facts & Figures 2008. Atlanta: American Cancer Society; 2008.
- 3. Carpelan-Holmstrom M, Nordling S, Pukkala E, Sankila R, Luttges J, Kloppel G, et al. Does anyone survive pancreatic ductal adenocarcinoma? A nationwide study re-evaluating the data of the Finnish Cancer Registry. *Gut.*, 2005 Mar; 54(3): 385–7.
- 4. Jamieson JD. Prospectives for cell and organ culture systems in the study of pancreatic carcinoma. *J Surg Oncol.*, 1975; 7(2): 139–41.
- 5. Longnecker DS, Wiebkin P, Schaeffer BK, Roebuck BD. Experimental carcinogenesis in the pancreas. *Int Rev Exp Pathol.*, 1984; 26: 177–229.

- 6. Hall PA, Lemoine NR. Rapid acinar to ductal transdifferentiation in cultured human exocrine pancreas. *J Pathol.*, 1992 Feb; 166(2): 97–103.
- 7. Habbe N, Shi G, Meguid RA, Fendrich V, Esni F, Chen H, et al. Spontaneous induction of murine pancreatic intraepithelial neoplasia (mPanIN) by acinar cell targeting of oncogenic Kras in adult mice. *Proc Natl Acad Sci U S A.*, 2008 Dec 2; 105(48): 18913–8.
- 8. Park SW, Davison JM, Rhee J, Hruban RH, Maitra A, Leach SD. Oncogenic KRAS induces progenitor cell expansion and malignant transformation in zebrafish exocrine pancreas. *Gastroenterology*, 2008 Jun; 134(7): 2080–90.
- 9. Murtaugh LC, Leach SD. A case of mistaken identity? Nonductal origins of pancreatic "ductal" cancers. *Cancer Cell.*, 2007 Mar; 11(3): 211–3.
- 10. Githens S. Pancreatic duct cell cultures. *Annu Rev Physiol*, 1994; 56: 419–43.
- 11. Githens S. The pancreatic duct cell: proliferative capabilities, specific characteristics, metaplasia, isolation, and culture. *J Pediatr Gastroenterol Nutr*, 1988 Jul–Aug; 7(4): 486–506.
- 12. Bonner-Weir S, Toschi E, Inada A, Reitz P, Fonseca SY, Aye T, et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. *Pediatric diabetes*, 2004; 5 Suppl 2: 16–22.
- 13. Jones RT, Barrett LA, van Haaften C, Harris CC, Trump BF. Carcinogenesis in the pancreas. I. Long-term explant culture of human and bovine pancreatic ducts. *J Natl Cancer Inst.*, 1977 Mar; 58(3): 557–65.
- 14. Oda D, Savard CE, Nguyen TD, Swenson ER, Lee SP. Culture of human main pancreatic duct epithelial cells. *In Vitro Cell Dev Biol Anim.*, 1998 Mar; 34(3): 211–6.
- 15. Trautmann B, Schlitt HJ, Hahn EG, Lohr M. Isolation, culture, and characterization of human pancreatic duct cells. *Pancreas*, 1993 Mar; 8(2): 248–54.
- 16. Furukawa T, Duguid WP, Rosenberg L, Viallet J, Galloway DA, Tsao MS. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am J Pathol., 1996 Jun; 148(6): 1763–70.
- 17. Ouyang H, Mou L, Luk C, Liu N, Karaskova J, Squire J, et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and

- phenotype. *Am J Pathol.*, 2000 Nov; 157(5): 1623–31.
- 18. Lee KM, Yasuda H, Hollingsworth MA, Ouellette MM. Notch 2-positive progenitors with the intrinsic ability to give rise to pancreatic ductal cells. *Lab Invest.*, 2005 Aug; 85(8): 1003–12.
- 19. Qian J, Niu J, Li M, Chiao PJ, Tsao MS. In vitro modeling of human pancreatic duct epithelial cell transformation defines gene expression changes induced by K-ras oncogenic activation in pancreatic carcinogenesis. *Cancer Res.*, 2005 Jun 15; 65(12): 5045–53.
- Campbell PM, Lee KM, Ouellette MM, Kim HJ, Groehler AL, Khazak V, et al. Ras-driven transformation of human nestin-positive pancreatic epithelial cells. *Methods Enzymol.*, 2008; 439: 451–65.
- 21. Bendayan M, Duhr MA, Gingras D. Studies on pancreatic acinar cells in tissue culture: basal lamina (basement membrane matrix promotes three-dimensional reorganization. *Eur J Cell Biol.*, 1986 Oct; 42(1): 60–7.
- Longnecker DS, Lilja HS, French J, Kuhlmann E, Noll W. Transplantation of azaserine-induced carcinomas of pancreas in rats. *Cancer Lett.*, 1979 Aug; 7(4): 197–202.
- 23. Ulrich AB, Schmied BM, Standop J, Schneider MB, Pour PM. Pancreatic cell lines: a review. *Pancreas.*, 2002 Mar; 24(2): 111–20.
- 24. Esni F, Miyamoto Y, Leach SD, Ghosh B. Primary explant cultures of adult and embryonic pancreas. *Methods Mol Med.*, 2005; 103: 259–71.
- 25. Hober C, Benhamou PY, Watt PC, Watanabe Y, Nomura Y, Stein E, et al. A new culture method for human pancreatic islets using a biopore membrane insert. *Pancreas*, 1997 Mar; 14(2): 199–204.
- Kenmochi T, Miyamoto M, Une S, Nakagawa Y, Moldovan S, Navarro RA, et al. Improved quality and yield of islets isolated from human pancreata using a two-step digestion method. *Pancreas*, 2000 Mar; 20(2): 184–90.
- Lucas-Clerc C, Massart C, Campion JP, Launois B, Nicol M. Long-term culture of human pancreatic islets in an extracellular matrix: morphological and metabolic effects. *Molecular and cellular* endocrinology, 1993 Jul; 94(1): 9–20.
- 28. Yuan S, Rosenberg L, Paraskevas S, Agapitos D, Duguid WP. Transdifferentiation of human islets to pancreatic ductal cells in collagen matrix culture. *Differentiation*, 1996 Oct; 61(1): 67–75.
- 29. Beattie GM, Itkin-Ansari P, Cirulli V, Leibowitz G, Lopez AD, Bossie S, et al. Sustained proliferation of PDX-1+ cells derived from human islets. *Diabetes*, 1999 May; 48(5): 1013–9.
- 30. Lu J, Gu YP, Xu X, Liu ML, Xie P, Song HP. Adult islets cultured in collagen gel transdifferentiate into duct-like cells. *World J Gastroenterol*, 2005 Jun 14; 11(22): 3426–30.
- 31. Murray HE, Paget MB, Bailey CJ, Downing R. Sustained insulin secretory response in human islets

- co-cultured with pancreatic duct-derived epithelial cells within a rotational cell culture system. *Diabetologia*, 2009 Jan 8.
- 32. Mueller BM, Reisfeld RA. Potential of the scid mouse as a host for human tumors. *Cancer Metastasis Rev*, 1991 Oct; 10(3): 193–200.
- 33. Pantelouris EM. Absence of thymus in a mouse mutant. *Nature.*, 1968 Jan 27; 217(5126): 370–1.
- 34. van Weerden WM, Romijn JC. Use of nude mouse xenograft models in prostate cancer research. *Prostate.*, 2000 Jun 1; 43(4): 263–71.
- Ikeda Y, Ezaki M, Hayashi I, Yasuda D, Nakayama K, Kono A. Establishment and characterization of human pancreatic cancer cell lines in tissue culture and in nude mice. *Jpn J Cancer Res.*, 1990 Oct; 81(10): 987–93.
- 36. Rubio-Viqueira B, Jimeno A, Cusatis G, Zhang X, Iacobuzio-Donahue C, Karikari C, et al. An in vivo platform for translational drug development in pancreatic cancer. *Clin Cancer Res.*, 2006 Aug 1; 12(15): 4652–61.
- 37. Walter K, Eshleman J, Goggins M. Xenografting and harvesting human ductal pancreatic adenocarcinomas for DNA analysis. *Methods Mol Med.*, 2005; 103: 103–11.
- 38. Pretlow TG, Delmoro CM, Dilley GG, Spadafora CG, Pretlow TP. Transplantation of human prostatic carcinoma into nude mice in Matrigel. *Cancer Res.*, 1991 Jul 15; 51(14): 3814–7.
- 39. Elsasser HP, Lehr U, Agricola B, Kern HF. Establishment and characterisation of two cell lines with different grade of differentiation derived from one primary human pancreatic adenocarcinoma. Virchows Arch B Cell Pathol Incl Mol Pathol., 1992; 61(5): 295–306.
- 40. Kobari M, Hisano H, Matsuno S, Sato T, Kan M, Tachibana T. Establishment of six human pancreatic cancer cell lines and their sensitivities to anti-tumor drugs. *Tohoku J Exp Med.*, 1986 Nov; 150(3): 231–48.
- 41. Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci., 2013, 4: 2502–2516.
- 42. Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2 (2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- 43. Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2 (2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- 44. Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).

- 45. Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- 46. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(4): 200-205.
- 47. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholocodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4(6): 572-579.
- 48. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 141-145.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 168-172.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 51. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 52. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 53. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 54. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101