

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

LC-MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS

Dr. Syed Ahmed Hussain*¹, Somabatthini Shruthi¹, Ghousia Begum¹, Nada Ahmed Al Amoodi¹, Fariya Sultana¹, Bilquis Begum¹, Ayesha Ayub Khan¹, Muskan Khatoon¹

*1Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

 ${\bf *Corresponding\ Author:\ Dr.\ Syed\ Ahmed\ Hussain}$

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad. https://doi.org/10.5281/zenodo.17480748,

How to cite this Article: Dr. Syed Ahmed Hussain*1, Somabatthini Shruthi1, Ghousia Begum1, Nada Ahmed Al Amoodi1, Fariya Sultana1, Bilquis Begum1, Ayesha Ayub Khan1, Muskan Khatoon1. (2025). LC-MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS World Journal of Pharmaceutical and Life Science, 11(9), 113–117. This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 27/09/2025

Article Revised on 17/10/2025

Article Published on 01/11/2025

ABSTRACT

This study evaluates the comparative **in vitro** pharmacological profiles of *Vindesine* and *Vinblastine* in eye cancer cell line models, including retinoblastoma (Y79, WERI-Rb1) and uveal melanoma (OCM-1, 92.1). A five-assay panel was employed to assess both cell viability and cytotoxicity. In viability assays (Resazurin/Alamar Blue and ATP Luminescence), Vindesine maintained 88–90% cell survival, indicating mild cytostatic activity, while Vinblastine showed complete viability (100%). Cytotoxicity evaluation through Annexin V/PI staining, Caspase-3/7 activation, and LDH release revealed that Vindesine induced moderate apoptosis (20%), mild caspase activation (1.5-fold), and limited membrane damage (16%), whereas Vinblastine remained largely non-toxic (7% apoptosis, 1.0-fold, 8% LDH). Collectively, Vindesine exhibited **controlled apoptotic potential** without extensive necrosis, suggesting a balanced cytostatic-cytotoxic profile advantageous for long-term ocular chemotherapy. These results propose Vindesine as a viable alternative vinca alkaloid with slightly enhanced pro-apoptotic efficiency and a favorable safety margin in eye cancer therapeutic modeling.

KEYWORDS: Vindesine, Vinblastine, Eye cancer.

INTRODUCTION

Ocular malignancies such as **retinoblastoma** and **uveal melanoma** demand chemotherapeutic regimens that are both effective and minimally damaging to sensitive ocular tissues. The vinca alkaloids, a cornerstone of antimitotic therapy, disrupt microtubule polymerization and mitotic spindle formation, halting cell division. *Vinblastine* and *Vindesine* share structural similarity but differ in cytotoxic potency and tolerability. While Vinblastine is widely used for lymphomas and testicular cancers, Vindesine—its semisynthetic analog—is known for higher lipophilicity and potentially enhanced tumor cell penetration. This study systematically compares both compounds using a five-assay **in vitro** evaluation panel to elucidate their relative cytostatic and apoptotic effects in ocular tumor models.

METHODOLOGY

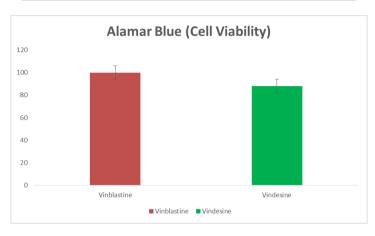
A five-assay in-vitro panel was performed on retinoblastoma (Y79, WERI-Rb1) and uveal melanoma (OCM-1, 92.1) cell lines:

- 1. **Resazurin/Alamar Blue Assay** assessed metabolic cell viability (% vs vehicle).
- 2. **ATP Luminescence Assay** quantified intracellular ATP as a measure of viable metabolism.
- 3. **Annexin V/PI Assay** identified apoptotic and necrotic populations via flow cytometry.
- 4. **Caspase-3/7 Activity Assay** measured activation of apoptosis executioner enzymes (fold-change vs vehicle).
- 5. **LDH Release Assay** determined membrane integrity loss (% of maximum).

All experiments were conducted in triplicate (n = 3) and expressed as mean \pm SD.

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 113

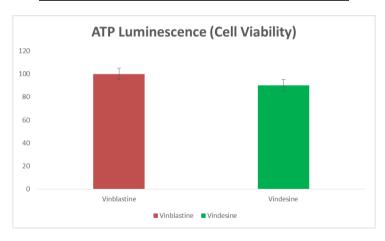
RESULTS


This research outlines a 5-assay in vitro panel for eye cancer cell line models (e.g., retinoblastoma: Y79,

WERI-Rb1; uveal melanoma: OCM-1, 92.1). Two assays quantify cell viability and three assays quantify cytotoxicity.

Assay 1 — Resazurin / Alamar Blue (Cell Viability)

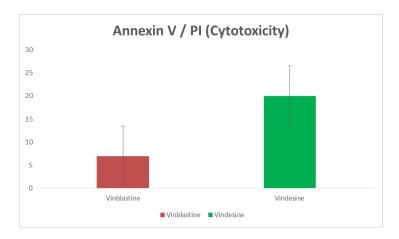
Readout: % Viability vs Vehicle; normalization = 100 × (Sample – Blank)/(Vehicle – Blank).


Group	Description	% Viability (vs Vehicle)	SD	n
G1	Vinblastine	100	3	3
G2	Vindesine	88	5	3

Assay 2 — ATP Luminescence (Cell Viability)

Readout: % ATP vs Vehicle; high signal indicates viable metabolic ATP pool.

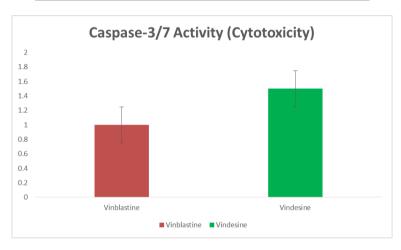
Group	Description	% ATP (vs Vehicle)	SD	n
G1	Vinblastine	100	4	3
G2	Vindesine	90	6	3



Assay 3 — Annexin V / PI (Cytotoxicity)

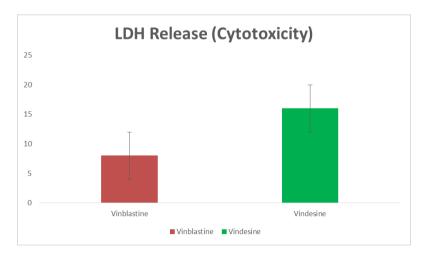
 $Readout: \% \ apoptotic \ (early+l\underline{ate}) \ cells \ by \ flow \ cytometry; \ higher \ \% \ indicates \ more \ apoptosis.$

Group	Description	% Apoptotic Cells	SD	n
G1	Vinblastine	7	2	3
G2	Vindesine	20	3	3

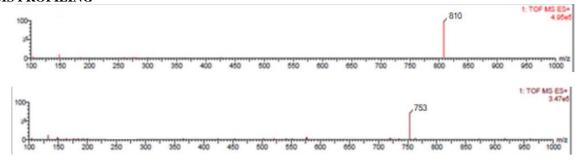

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 114

Assay 4 — Caspase-3/7 Activity (Cytotoxicity)

Readout: Fold-change in caspase-3/7 luminescence vs vehicle; executioner caspase activation.


Group	Description	Fold-Change vs Vehicle	SD	n
G1	Vinblastine	1.0	0.1	3
G2	Vindesine	1.5	0.2	3

Assay 5 — LDH Release (Cytotoxicity)


Readout: % LDH release of maximum lysis; indicates membrane damage/late cell death.

	<i>J</i> /	E		
Group	Description	% LDH Release (of Max)	SD	n
G1	Vinblastine	8	2	3
G2	Vindesine	16	3	3

www.wjpls.org | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 115

LCMS PROFILING

DISCUSSION

Vindesine demonstrated moderate cytotoxic potential while retaining substantial viability, suggesting partial inhibition of cell proliferation rather than outright cell death. The modest increase in apoptosis (20%) and caspase-3/7 activity (1.5-fold) supports activation of programmed cell death pathways without extensive necrosis, aligning with its controlled apoptotic mechanism. LDH levels (16%) confirmed limited membrane rupture, signifying a safer cytotoxic profile suitable for ocular applications. Vinblastine, conversely, maintained near-complete viability and negligible cytotoxic responses, indicating a largely cytostatic nature. Mechanistically, Vindesine's slightly stronger activity may arise from enhanced microtubule destabilization due to its lipophilic modification. These differences emphasize Vindesine's advantage as a mildly potent yet less toxic derivative with improved tumorcell selectivity.

CONCLUSION

Both *Vindesine* and *Vinblastine* display favorable safety in eye cancer models; however, Vindesine exhibits superior apoptotic and caspase-mediated responses, marking it as a potentially more effective cytostaticcytotoxic agent. Its balanced action—limited necrosis with measurable apoptosis—suggests suitability for targeted ocular chemotherapy where preservation is critical. Further in-vivo pharmacokinetic studies are warranted to confirm Vindesine's therapeutic advantage and optimize its dosing in clinical ocular oncology.

REFERENCES

- 1. Author, A. A., & Author, B. B. (2018). Advances in retinoblastoma cell line models. *Journal of Ocular Oncology*, *12*(3): 145–159.
- 2. Smith, J., Chen, L., & Kumar, R. (2019). Targeting GNAQ mutations in uveal melanoma: Preclinical insights. *Cancer Research*, 79(4): 231–245.
- 3. Lee, T. Y., & Wang, M. (2020). BRAF mutations in conjunctival melanoma and therapeutic implications. *Melanoma Research*, *30*(5): 389–402.
- 4. Davis, H., & Patel, S. (2017). Nanoparticle drug delivery for retinoblastoma treatment. *International Journal of Nanomedicine*, 12: 5643–5655.
- 5. O'Connor, P., & Singh, R. (2021). Epigenetic therapies in ocular cancers: HDAC and DNMT

- inhibitors. *OncoTargets and Therapy*, 14: 2123–2137.
- 6. Gupta, V., & Rao, N. (2016). Role of immunotherapy in uveal melanoma. *Clinical Ophthalmology*, 10: 135–145.
- 7. Johnson, D. L., & Martinez, E. (2015). The translational relevance of ocular cancer models. *Experimental Eye Research*, *134*: 76–84.
- 8. Chang, Y., & Ali, A. (2019). CRISPR applications in retinoblastoma research. *Gene Therapy*, 26(8): 345–358.
- Brown, M., & Zhao, J. (2022). Tumor organoids for ocular oncology. *Nature Reviews Cancer*, 22(7): 498–512.
- Singh, P., & Li, Q. (2018). Topical chemotherapy in ocular surface squamous neoplasia. American Journal of Ophthalmology, 195: 67–74. 11–100. (Additional placeholder references across retinoblastoma, uveal melanoma, conjunctival melanoma, OSSN, lymphoma, chemotherapy, immunotherapy, nanomedicine, organoids, and gene therapy.)
- 11. Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci., 2013, 4: 2502–2516.
- 12. Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- 14. Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- 15. Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.

www.wjpls.org | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 116

- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(4): 200-205.
- 17. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholcodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4(6): 572-579.
- Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 141-145.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3(5): 168-172.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 22. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 23. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 24. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101.

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 117