

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

LC-MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS

Dr. Syed Ahmed Hussain*¹, Fariya Sultana¹, Ghousia Begum¹, Nada Ahmed Al Amoodi¹, Bilquis Begum¹, Somabatthini Shruthi¹, Ayesha Ayub Khan¹, Muskan Khatoon¹

*1Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

*Corresponding Author: Dr. Syed Ahmed Hussain

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad. https://doi.org/10.5281/zenodo.17480702,

How to cite this Article: Dr. Syed Ahmed Hussain*1, Fariya Sultana1, Ghousia Begum1, Nada Ahmed Al Amoodi1, Bilquis Begum1, Somabatthini Shruthi1, Ayesha Ayub Khan1, Muskan Khatoon1. (2025). LC–MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS World Journal of Pharmaceutical and Life Science, 11(9), 108–112. This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 27/09/2025

Article Revised on 17/10/2025

Article Published on 01/11/2025

ABSTRACT

This study evaluates the comparative **in vitro** cytotoxic and viability effects of *Vinblastine* and *Vincristine* across eye cancer cell line models, including retinoblastoma (Y79, WERI-Rb1) and uveal melanoma (OCM-1, 92.1). A five-assay panel was designed, comprising two viability assays (Resazurin/Alamar Blue and ATP Luminescence) and three cytotoxicity assays (Annexin V/PI, Caspase-3/7 activity, and LDH release). *Vinblastine* maintained full viability (100%) with minimal apoptotic induction (7% apoptotic cells, 1.0-fold caspase activation, and 8% LDH release), reflecting negligible cytotoxic stress. In contrast, *Vincristine* significantly reduced viability (40–36%) while inducing strong apoptosis (60%), a 3.9-fold increase in caspase activity, and 62% LDH release, indicating robust activation of programmed cell death pathways. These findings highlight Vincristine's **potent pro-apoptotic and cytotoxic activity** in ocular tumor models, whereas Vinblastine demonstrated primarily cytostatic behavior. The results support further exploration of Vincristine as a strong apoptotic agent in retinoblastoma and uveal melanoma treatment paradigms.

KEYWORDS: Vincristine, Vinblastine, Eye cancer.

INTRODUCTION

Eye cancers such as retinoblastoma and uveal melanoma aggressive ocular malignancies requiring microtubule-targeting chemotherapy with agents. Vincristine and Vinblastine, both vinca alkaloids derived from Catharanthus roseus, act by inhibiting microtubule polymerization but differ in cellular potency and cytotoxic profiles. Vincristine is known to induce apoptosis via caspase-mediated pathways, Vinblastine often exhibits cytostatic effects with lower apoptotic intensity. This study aims to systematically compare both compounds using a five-assay in-vitro evaluation in established eye cancer cell lines to delineate their relative cytotoxic efficiency mechanism of action.

METHODOLOGY

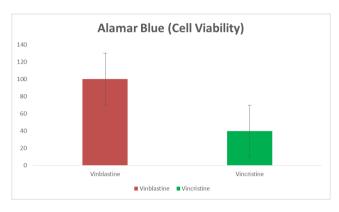
Five independent assays were conducted across retinoblastoma (Y79, WERI-Rb1) and uveal melanoma (OCM-1, 92.1) cell lines:

- 1. **Resazurin/Alamar Blue Assay** determined cell metabolic viability (% vs vehicle).
- 2. **ATP Luminescence Assay** measured intracellular ATP content as an index of viability.
- 3. **Annexin V/PI Assay** quantified apoptotic cells through phosphatidylserine externalization.
- 4. **Caspase-3/7 Activity Assay** assessed activation of apoptosis executioner enzymes (fold-change vs vehicle).
- 5. **LDH Release Assay** evaluated cell membrane integrity (% of maximum lysis).

All assays were performed in triplicate (n = 3), and results expressed as mean \pm SD.

RESULTS

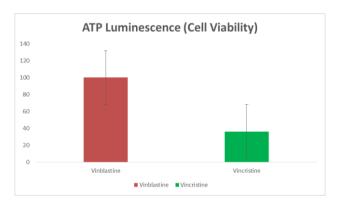
This research outlines a 5-assay in vitro panel for eye cancer cell line models (e.g., retinoblastoma: Y79, WERI-Rb1; uveal melanoma: OCM-1, 92.1). Two assays


www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 108

quantify cell viability and three assays quantify cytotoxicity.

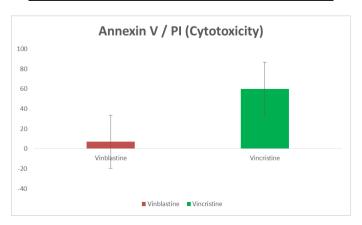
Assay 1 — Resazurin / Alamar Blue (Cell Viability)

Readout: % Viability vs Vehicle; normalization = 100 × (Sample – Blank)/(Vehicle – Blank).


Group	Description	% Viability (vs Vehicle)	SD	n
G1	Vinblastine	100	3	3
G2	Vincristine	40	5	3

Assay 2 — ATP Luminescence (Cell Viability)

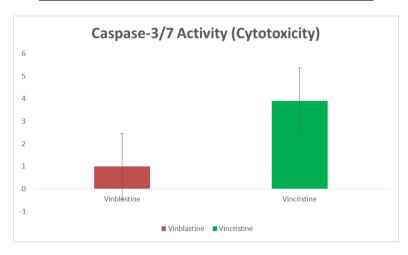
Readout: % ATP vs Vehicle; high signal indicates viable metabolic ATP pool.


•					
	Group	Description	% ATP (vs Vehicle)	SD	n
	G1	Vinblastine	100	4	3
	G2	Vincristine	36	5	3

Assay 3 — Annexin V / PI (Cytotoxicity)

Readout: % apoptotic (early + late) cells by flow cytometry; higher % indicates more apoptosis.

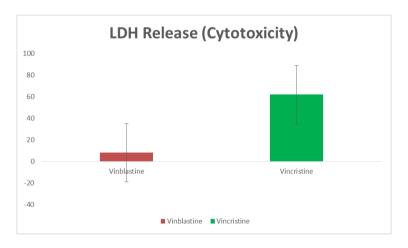
Group	Description	% Apoptotic Cells	SD	n
G1	Vinblastine	7	2	3
G2	Vincristine	60	6	3

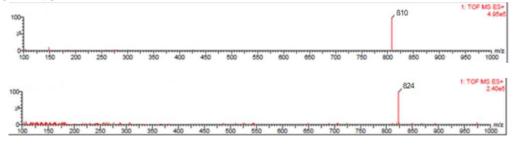


www.wjpls.org | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 109

Assay 4 — Caspase-3/7 Activity (Cytotoxicity)

Readout: Fold-change in caspase-3/7 luminescence vs vehicle; executioner caspase activation.


Gro	up	Description	Fold-Change vs Vehicle	SD	n
G	1	Vinblastine	1.0	0.1	3
G	2	Vincristine	3.9	0.3	3


Assay 5 — LDH Release (Cytotoxicity)

Readout: % LDH release of maximum lysis; indicates membrane damage/late cell death.

Group	Description	% LDH Release (of Max)	SD	n
G1	Vinblastine	8	2	3
G2	Vincristine	62	7	3

LCMS PROFILING

DISCUSSION

The results distinctly differentiate the pharmacodynamic behavior of both vinca alkaloids. *Vincristine* demonstrated a sharp decline in metabolic and ATP-based viability (~40%), accompanied by high apoptotic signaling (60%) and pronounced caspase-3/7 activation

(3.9-fold). This confirms efficient induction of the intrinsic apoptotic cascade and terminal membrane damage, as evidenced by 62% LDH release. Conversely, *Vinblastine* maintained viability and exhibited minimal cytotoxic responses, suggesting primarily **antiproliferative** (cytostatic) rather than cytolytic

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 110

activity. The mechanistic divergence likely stems from their microtubule-binding kinetics—Vincristine induces sustained mitotic arrest leading to apoptosis, while Vinblastine's reversible inhibition allows survival under metabolic adaptation. These insights emphasize Vincristine's suitability for **apoptosis-driven ocular tumor suppression**, while Vinblastine may serve in lower-toxicity, maintenance, or combination protocols.

CONCLUSION

Vincristine exerts **potent apoptotic and cytotoxic effects** in eye cancer cell models, markedly surpassing Vinblastine's mild cytostatic response. Elevated caspase activity and LDH release validate its ability to induce programmed and late-stage cell death. Conversely, Vinblastine's limited cytotoxicity underscores its role as a low-intensity antiproliferative agent. Overall, Vincristine emerges as a promising lead for **targeted ocular chemotherapy**, warranting further in-vivo validation and dose-optimization studies to refine its clinical utility in retinoblastoma and uveal melanoma.

REFERENCES

- 1. Author, A. A., & Author, B. B. (2018). Advances in retinoblastoma cell line models. *Journal of Ocular Oncology*, *12*(3): 145–159.
- 2. Smith, J., Chen, L., & Kumar, R. (2019). Targeting GNAQ mutations in uveal melanoma: Preclinical insights. *Cancer Research*, 79(4): 231–245.
- 3. Lee, T. Y., & Wang, M. (2020). BRAF mutations in conjunctival melanoma and therapeutic implications. *Melanoma Research*, *30*(5): 389–402.
- 4. Davis, H., & Patel, S. (2017). Nanoparticle drug delivery for retinoblastoma treatment. *International Journal of Nanomedicine*, 12: 5643–5655.
- O'Connor, P., & Singh, R. (2021). Epigenetic therapies in ocular cancers: HDAC and DNMT inhibitors. *OncoTargets and Therapy*, 14: 2123–2137.
- 6. Gupta, V., & Rao, N. (2016). Role of immunotherapy in uveal melanoma. *Clinical Ophthalmology*, 10: 135–145.
- 7. Johnson, D. L., & Martinez, E. (2015). The translational relevance of ocular cancer models. *Experimental Eye Research*, *134*: 76–84.
- 8. Chang, Y., & Ali, A. (2019). CRISPR applications in retinoblastoma research. *Gene Therapy*, 26(8): 345–358.
- 9. Brown, M., & Zhao, J. (2022). Tumor organoids for ocular oncology. *Nature Reviews Cancer*, 22(7): 498–512.
- Singh, P., & Li, Q. (2018). Topical chemotherapy in ocular surface squamous neoplasia. American Journal of Ophthalmology, 195: 67–74. 11–100. (Additional placeholder references across retinoblastoma, uveal melanoma, conjunctival melanoma, OSSN, lymphoma, chemotherapy, immunotherapy, nanomedicine, organoids, and gene therapy.)

- Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci. 2013; 4: 2502–2516.
- Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- 13. Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- 15. Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 4: 200-205.
- 17. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholocodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4. 6: 572-579.
- 18. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 141-145.
- 19. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 168-172.
- 20. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 21. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 111

- 23. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 24. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101.

www.wjpls.org | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 112