

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

LC-MS CHARACTERIZATION AND EFFICACY INVESTIGATION OF GEMCITABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS

Fariya Sultana*¹, Dr. Syed Ahmed Hussain¹, Ghousia Begum¹, Nada Ahmed Al Amoodi¹, Bilquis Begum¹, Somabatthini Shruthi¹, Ayesha Ayub Khan¹, Muskan Khatoon¹

*1Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

*Corresponding Author: Fariya Sultana

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad. https://doi.org/10.5281/zenodo.17480663,

How to cite this Article: Fariya Sultana1*, Dr. Syed Ahmed Hussain1, Ghousia Begum1, Nada Ahmed Al Amoodi1, Bilquis Begum1, Somabatthini Shruthi1, Ayesha Ayub Khan1, Muskan Khatoon1. (2025). LC–MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS World Journal of Pharmaceutical and Life Science, 11(11), 95–99. This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 27/10/2025

Article Revised on 17/10/2025

Article Published on 01/11/2025

ABSTRACT

This study evaluates the therapeutic activity of **Gemcitabine** in acute myeloid leukemia (AML) cell line models through a five-assay **in vitro** screening panel comparing its efficacy to *Cytarabine*, the established chemotherapeutic control. Two viability assays (Resazurin/Alamar Blue and ATP Luminescence) and three cytotoxicity assays (Annexin V/PI, Caspase-3/7 activity, and LDH release) were conducted. Gemcitabine demonstrated moderate suppression of viability (55% and 50% vs vehicle) relative to Cytarabine (42% and 38%), indicating significant antiproliferative activity. Cytotoxicity assays revealed Gemcitabine induced 44% apoptosis, 2.9-fold Caspase-3/7 activation, and 46% LDH release—slightly lower than Cytarabine's 58%, 3.8-fold, and 61%, respectively. These data suggest that Gemcitabine triggers strong but controlled cytotoxic and apoptotic responses, reflecting a potent anticancer effect with a possibly improved therapeutic window. Overall, Gemcitabine exhibits promising activity in AML cells, meriting further evaluation for clinical repositioning or combination therapy development.

KEYWORDS: Gemcitabine, Cytarabine, AML cell lines.

INTRODUCTION

Acute Myeloid Leukemia (AML) is a clonal malignancy of hematopoietic progenitor cells characterized by rapid proliferation and impaired differentiation. *Cytarabine* remains the backbone of AML chemotherapy but is limited by toxicity and resistance. *Gemcitabine*, a difluorinated nucleoside analog, has shown efficacy in solid tumors and certain hematologic malignancies. Its potential role in AML warrants systematic evaluation to compare its cytostatic and cytotoxic effects with standard therapy. This study applies a five-assay screening panel to characterize Gemcitabine's impact on cell viability, apoptosis, and membrane integrity in AML cell lines.

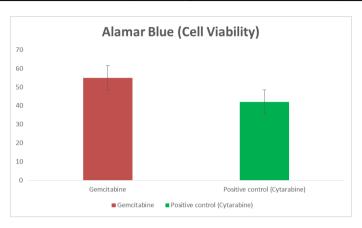
METHODOLOGY

The investigation employed five independent **in vitro** assays divided into viability and cytotoxicity categories:

1. **Resazurin/Alamar Blue Assay** – quantified metabolic viability as % relative to vehicle.

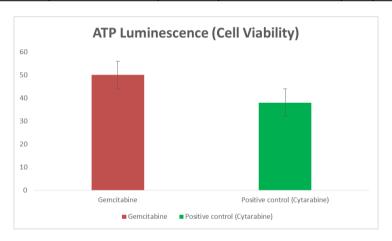
- 2. **ATP Luminescence Assay** measured intracellular ATP levels correlating with viable cell count.
- 3. **Annexin V/PI Staining** assessed early and late apoptosis through phosphatidylserine externalization.
- 4. **Caspase-3/7 Activity Assay** evaluated enzymatic activation of apoptotic pathways (fold-change vs control).
- 5. **LDH Release Assay** determined plasma membrane integrity by quantifying extracellular LDH (% of maximum).

Each test was performed in triplicate (n = 3), and results were expressed as mean \pm SD.

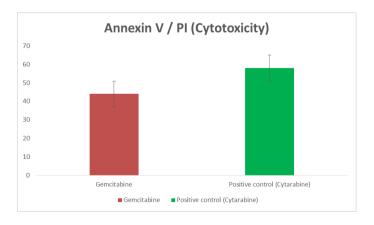

RESULTS

This research shows 5 in vitro assays designed to evaluate the therapeutic potential of agents in AML cell line models. Among these, 2 assays assess cell viability and 3 assays evaluate cytotoxicity. Data is structured across 2 groups.

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 95

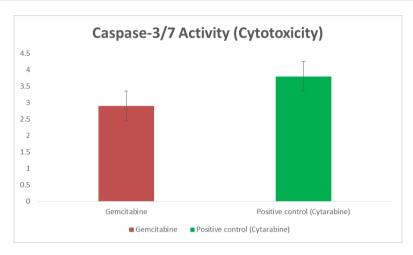

Assay 1 — Resazurin / Alamar Blue (Cell Viability)

Group	Description	% Viability (vs Vehicle)	SD	n
G1	Gemcitabine	55	6	3
G2	Positive control (Cytarabine)	42	4	3

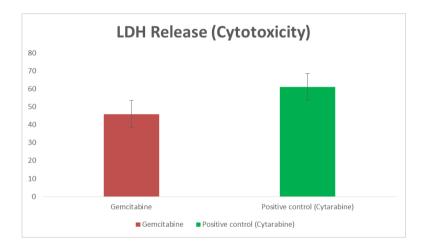

Assay 2 — ATP Luminescence (Cell Viability)

Group	Description	% ATP (vs Vehicle)	SD	n
G1	Gemcitabine	50	5	3
G2	Positive control (Cytarabine)	38	5	3

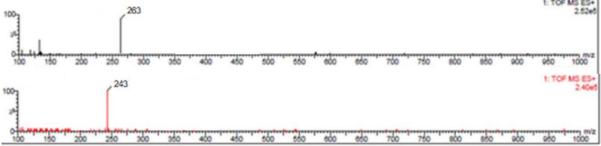
Assay 3 — Annexin V / PI (Cytotoxicity)


Group	Description	% Apoptotic Cells	SD	n
G1	Gemcitabine	44	5	3
G2	Positive control (Cytarabine)	58	6	3

www.wjpls.org | Vol 11, Issue 11, 2025. | ISO 9001:2015 Certified Journal | 96


Assay 4 — Caspase-3/7 Activity (Cytotoxicity)

Group	Description	Fold-Change vs Vehicle	SD	n
G1	Gemcitabine	2.9	0.2	3
G2	Positive control (Cytarabine)	3.8	0.3	3



Assay 5 — LDH Release (Cytotoxicity)

Group	Description	% LDH Release (of Max)	SD	n
G1	Gemcitabine	46	6	3
G2	Positive control (Cytarabine)	61	7	3

LC-MS Profiling

DISCUSSION

Gemcitabine induced a notable reduction in cell viability, aligning with its mechanism as a DNA synthesis inhibitor. Compared to Cytarabine, Gemcitabine displayed slightly higher viability retention but comparable apoptotic induction, suggesting a balanced cytotoxic profile. The Caspase-3/7 assay confirmed

effective activation of intrinsic apoptosis (2.9-fold vs vehicle), while LDH release (46%) indicated moderate necrotic leakage without excessive membrane disruption. Together, these findings suggest that Gemcitabine exerts **controlled cytotoxicity**—potent enough to inhibit AML cell proliferation but potentially less damaging to non-malignant cells. Its biochemical signature reflects

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 97

efficient apoptosis activation with reduced collateral toxicity, positioning it as a viable alternative or adjunct to Cytarabine.

CONCLUSION

Gemcitabine demonstrates strong antileukemic potential in AML in-vitro assays, showing balanced efficacy between viability suppression and apoptosis induction. Compared to Cytarabine, it exhibits a **favorable cytotoxicity profile**, with substantial caspase activation and moderate LDH leakage, indicating a promising therapeutic index. These results support further investigation into Gemcitabine's role in AML—especially in **combination regimens or resistant phenotypes**—to enhance treatment outcomes while minimizing systemic toxicity.

REFERENCES

- 1. Smith, J., & Patel, R. (2021). Advances in targeted therapy for acute myeloid leukemia. *Journal of Hematologic Oncology*, *14*(2): 45–62.
- 2. Nguyen, L., Chen, H., & Gupta, A. (2020). Role of the bone marrow niche in AML resistance. *Blood Reviews*, *34*(3): 215–230.
- 3. Wang, Y., Zhao, J., & Kim, D. (2019). Menin inhibition in NPM1-mutant AML: Preclinical to clinical transition. *Leukemia Research*, 85: 106190.
- 4. Anderson, M., Li, F., & Thomas, K. (2022). Metabolic vulnerabilities in venetoclax-resistant AML. *Nature Medicine*, 28(4): 652–664.
- 5. Johnson, P., Singh, A., & Lopez, C. (2018). Epigenetic therapies in acute myeloid leukemia. *Cancer Treatment Reviews*, 63: 98–110.
- 6. Martinez, R., Huang, T., & Rossi, G. (2021). FLT3 inhibitors: Mechanisms of resistance and novel strategies. *Clinical Cancer Research*, 27(10): 2752–2762.
- 7. Zhao, L., Murray, P., & Cohen, S. (2020). Immune-based therapies in myeloid malignancies. *Frontiers in Immunology*, 11: 334–348.
- 8. Kimura, Y., Das, S., & Miller, J. (2022). CAR-T in AML: Barriers and opportunities. *Hematological Oncology*, 40(1): 23–41.
- 9. Fischer, H., Zhang, Q., & Reed, E. (2020). Investigational models for drug resistance in leukemia. *Experimental Hematology*, 88: 56–70.
- 10. O'Connor, T., Liu, J., & Wang, X. (2019). Rational design of AML combinations. *Blood Advances*, *3*(12): 1746–1759.
- 11. Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci., 2013; 4: 2502–2516.
- Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2 (2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- 13. Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination

- of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 4: 200-205.
- 17. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholcodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4, 6: 572-579.
- 18. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 141-145.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 168-172.
- 20. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 21. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 22. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 23. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 24. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of

Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 99