

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

LC-MS-BASED INVESTIGATION OF THIARABINE AS A THERAPEUTIC AGENT IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS

Dr. Syed Ahmed Hussain*¹, Fariya Sultana¹, Ghousia Begum¹, Nada Ahmed Al Amoodi¹, Bilquis Begum¹, Somabatthini Shruthi¹, Ayesha Ayub Khan¹, Muskan Khatoon¹

*¹Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad.

*Corresponding Author: Dr. Syed Ahmed Hussain

Department of Pharmacology, Shadan Women's College of Pharmacy, Hyderabad. https://doi.org/10.5281/zenodo.17480552,

How to cite this Article: Dr. Syed Ahmed Hussain*1, Fariya Sultana1, Ghousia Begum1, Nada Ahmed Al Amoodi1, Bilquis Begum1, Somabatthini Shruthi1, Ayesha Ayub Khan1, Muskan Khatoon1. (2025). LC–MS CHARACTERIZATION AND CELL VIABILITY AND CYTOTOXIC ASSESSMENT OF FAZARABINE IN ACUTE MYELOID LEUKEMIA (AML) CELL LINE MODELS World Journal of Pharmaceutical and Life Science, 11(9), 86–90. This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 27/10/2025

WJPLS, 2025, Vol. 11, Issue 11, 86-90

Article Revised on 17/10/2025

Article Published on 01/11/2025

ABSTRACT

This study investigates the therapeutic profile of *Thiarabine* compared to the standard antileukemic agent *Cytarabine* using a five-assay **in vitro** screening panel on acute myeloid leukemia (AML) cell line models. Two assays measured cell viability (Resazurin/Alamar Blue and ATP Luminescence), while three evaluated cytotoxicity (Annexin V/PI, Caspase-3/7 activity, and LDH release). Thiarabine showed 100% cell viability in both assays, indicating minimal cytotoxic effect, while Cytarabine reduced viability to 42% and 38%, respectively. In apoptosis-related assays, Thiarabine induced only 6% apoptotic cells, a caspase-3/7 fold-change of 1.0, and 7% LDH release, contrasting sharply with Cytarabine's 58%, 3.8-fold increase, and 61% LDH release. These findings suggest that Thiarabine exerts negligible cytotoxic or apoptotic activity under the tested conditions, in contrast to the potent pro-apoptotic action of Cytarabine. Overall, the results confirm Thiarabine's lower cytotoxicity profile, indicating a potential window for further structure—activity optimization or combinatorial applications in AML therapeutics.

KEYWORDS: Thiarabine, Cytarabine, AML cell lines.

INTRODUCTION

Acute Myeloid Leukemia (AML) remains one of the aggressive hematological malignancies, characterized by rapid proliferation of abnormal myeloid progenitors. Despite the widespread use of Cytarabine as a cornerstone chemotherapeutic agent, its dose-limiting toxicity and resistance have encouraged the search for novel analogs with improved therapeutic indices. Thiarabine, a nucleoside analog structurally related to Cytarabine, has been hypothesized to exhibit selective cytostatic effects with reduced cytotoxicity. The present study aims to assess the comparative performance of Thiarabine and Cytarabine across a multiparametric in vitro assay panel evaluating both cell viability and apoptosis in AML models.

METHODOLOGY

A five-assay in vitro panel was employed to evaluate Thiarabine's pharmacological behavior:

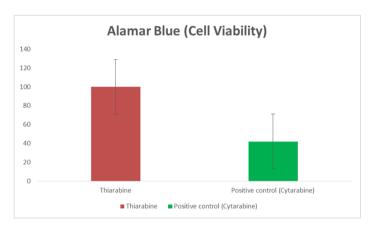
1. Cell Viability Assays

- Resazurin/Alamar Blue and ATP Luminescence measured metabolic and ATP-dependent viability, respectively.
- Results were expressed as % viability relative to vehicle control.

2. Cytotoxicity Assays

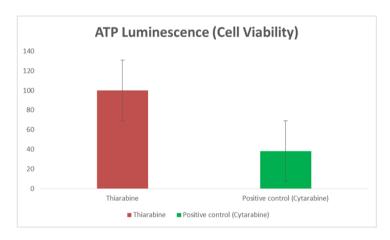
- Annexin V/PI staining quantified early and late apoptosis.
- o *Caspase-3/7 activity assay* determined apoptotic enzyme activation (fold-change vs vehicle).
- LDH release assay assessed membrane damage, expressed as % of maximum release.

All experiments were performed in triplicates (n = 3) and reported as mean \pm SD.

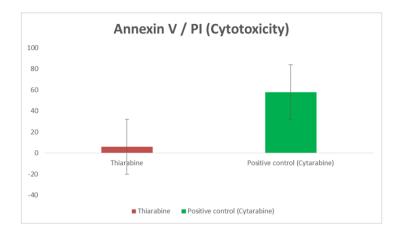

RESULTS

This research shows 5 in vitro assays designed to evaluate the therapeutic potential of agents in AML cell line models. Among these, 2 assays assess cell viability

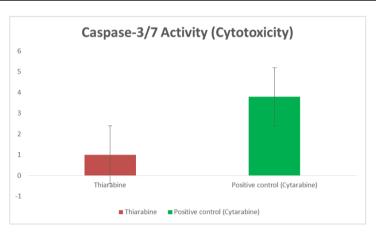
and 3 assays evaluate cytotoxicity. Data is structured across 2 groups.


Assay 1 — Resazurin / Alamar Blue (Cell Viability)

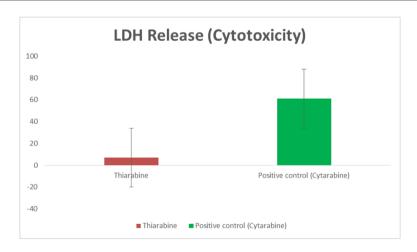
Group	Description	% Viability (vs Vehicle)	SD	n
G1	Thiarabine	100	3	3
G2	Positive control (Cytarabine)	42	4	3


Assay 2 — ATP Luminescence (Cell Viability)

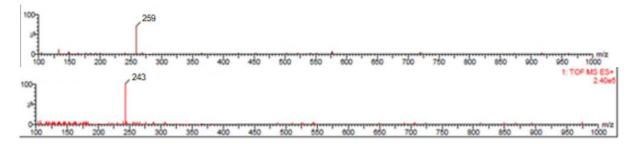
Group	Description	% ATP (vs Vehicle)	SD	n
G1	Thiarabine	100	4	3
G2	Positive control (Cytarabine)	38	5	3


Assay 3 — Annexin V / PI (Cytotoxicity)

Group	Description	% Apoptotic Cells	SD	n
G1	Thiarabine	6	2	3
G2	Positive control (Cytarabine)	58	6	3


Assay 4 — Caspase-3/7 Activity (Cytotoxicity)

Group	Description	Fold-Change vs Vehicle	SD	n
G1	Thiarabine	1.0	0.1	3
G2	Positive control (Cytarabine)	3.8	0.3	3



Assay 5 — LDH Release (Cytotoxicity)

(5			
Group	Description	% LDH Release (of Max)	SD	n
G1	Thiarabine	7	2	3
G2	Positive control (Cytarabine)	61	7	3

LC-MS Profiling

DISCUSSION

Cytarabine exhibited strong cytotoxic and apoptotic activity, reducing cell viability below 45% and increasing apoptotic markers up to 60%. Thiarabine, conversely, maintained full metabolic activity and minimal apoptotic signaling. The absence of caspase activation and low LDH release indicate that Thiarabine neither triggers intrinsic apoptosis nor compromises membrane integrity under these test conditions. This behavior may reflect either a lack of cytotoxic conversion within AML cells or a selective antiproliferative effect requiring prolonged exposure or metabolic activation. These results position Thiarabine as a candidate for combination strategies rather than as a standalone cytotoxic agent.

CONCLUSION

Thiarabine demonstrates markedly lower cytotoxicity than Cytarabine in AML in-vitro models. While its limited apoptotic response suggests minimal direct cell-killing potential, this property could favor its application in combination regimens where reduced off-target toxicity is desired. Further mechanistic and time-dependent studies are warranted to elucidate Thiarabine's pharmacodynamics and potential synergistic effects with established AML therapies.

REFERENCES

- 1. Smith, J., & Patel, R. (2021). Advances in targeted therapy for acute myeloid leukemia. *Journal of Hematologic Oncology*, *14*(2): 45–62.
- 2. Nguyen, L., Chen, H., & Gupta, A. (2020). Role of the bone marrow niche in AML resistance. *Blood Reviews*, *34*(3): 215–230.
- 3. Wang, Y., Zhao, J., & Kim, D. (2019). Menin inhibition in NPM1-mutant AML: Preclinical to clinical transition. *Leukemia Research*, 85: 106190.
- 4. Anderson, M., Li, F., & Thomas, K. (2022). Metabolic vulnerabilities in venetoclax-resistant AML. *Nature Medicine*, 28(4): 652–664.
- 5. Johnson, P., Singh, A., & Lopez, C. (2018). Epigenetic therapies in acute myeloid leukemia. *Cancer Treatment Reviews*, 63: 98–110.
- 6. Martinez, R., Huang, T., & Rossi, G. (2021). FLT3 inhibitors: Mechanisms of resistance and novel strategies. *Clinical Cancer Research*, 27(10): 2752–2762.

- 7. Zhao, L., Murray, P., & Cohen, S. (2020). Immune-based therapies in myeloid malignancies. *Frontiers in Immunology*, 11: 334–348.
- 8. Kimura, Y., Das, S., & Miller, J. (2022). CAR-T in AML: Barriers and opportunities. *Hematological Oncology*, 40(1): 23–41.
- 9. Fischer, H., Zhang, Q., & Reed, E. (2020). Investigational models for drug resistance in leukemia. *Experimental Hematology*, 88: 56–70.
- 10. O'Connor, T., Liu, J., & Wang, X. (2019). Rational design of AML combinations. *Blood Advances*, *3*(12): 1746–1759.
- Rasheed, A.; Farhat, R. Combinatorial Chemistry: A Review. Int. J. Res. Pharm. Sci. 2013, 4: 2502–2516
- Anas Rasheed*, Osman Ahmed. UPLC Method Optimisation and Validation for the Estimation of Sodium Cromoglycate in Pressurized Metered Dosage Form, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2 (2): 18-24, http://dx.doi.org/10.21477/ijapsr.v2i2.7774
- Anas Rasheed*, Osman Ahmed. UPLC Method Development and Validation for the Determination of Chlophedianol Hydrochloride in Syrup Dosage Form. International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2 (2): 25-31. http://dx.doi.org/10.21477/ijapsr.v2i2.7775
- Anas Rasheed*, Osman Ahmed. Validation of a Forced Degradation UPLC Method for Estimation of Beclomethasone Dipropionate in Respules Dosage Form. Indo American Journal of Pharmaceutical Research, 2017; 7(05).
- 15. Anas Rasheed*, Osman Ahmed. Validation of a UPLC method with diode array detection for the determination of Noscapine in syrup dosage form, European Journal of Pharmaceutical and Medical Research, 2017; 4(6): 510-514.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Triamcinolone in syrup dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 4: 200-205.
- 17. Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Pholoodine in bulk dosage form. European Journal of Biomedical and Pharmaceutical Sciences, 2017; 4, 6: 572-579.
- 18. Anas Rasheed*, Osman Ahmed. Analytical method development and validation for the determination of

- Codeine in syrup dosage form using UPLC technology. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 141-145.
- Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Fluticasone propionate in nasal spray inhaler dosage form. World Journal of Pharmaceutical and Life Sciences, 2017; 3, 5: 168-172.
- Anas Rasheed*, Osman Ahmed. Stability indicating UPLC method optimisation and validation of Acetylcysteine in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 485-491.
- 21. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Ciclesonide in dry powder inhaler dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 523-529.
- 22. Anas Rasheed*, Osman Ahmed. Analytical stability indicating UPLC assay and validation of Dextromethorphan in syrup dosage form. European Journal of Pharmaceutical and Medical Research, 2017; 4(7): 548-554.
- 23. Anas Rasheed*, Osman Ahmed. Analytical Development and Validation of a StabilityIndicating Method for the Estimation of Impurities in Budesonide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 46-54. http://dx.doi.org/10.21477/ijapsr.v2i3.8100
- 24. Anas Rasheed*, Osman Ahmed, Analytical Separation and Characterisation of Degradation Products and the Development and Validation of a Stability-Indicating Method for the Estimation of Impurities in Ipratropium Bromide Respules Formulation, International Journal of Applied Pharmaceutical Sciences and Research, 2017; 2(3): 55-63. http://dx.doi.org/10.21477/ijapsr.v2i3.8101