

World Journal of Pharmaceutical and Life Sciences

www.wjpls.org

Impact Factor: 7.409 Coden USA: WJPLA7

PRECLINICAL EVIDENCES FOR POTENTIAL OF AGMATINE IN TREATMENT OF POLYCYSTIC OVARIAN SYNDROME IN RATS

Vinjavarapu L. Anusha*, B. Ajay¹, B. Hemanth¹, A. Chiranjeevi¹, D. Sonu Naik¹, V. Vamsi Krishna¹, S. K. Rafi¹, D. Hari Babu¹, S. K. Suleman Basha¹, Ikramul Hussain¹, Himadri Barmann¹

*Associate Professor, Dept. of Pharmacology, Sims College of Pharmacy, Mangaldas Nagar and Guntur- 522001, Andhra Pradesh, India.

¹Students, Dept. of Pharmacy, Sims College of Pharmacy, Mangaldas Nagar, Guntur-522001, Andhra Pradesh, India.

*Corresponding Author: Vinjavarapu L. Anusha

Associate Professor, Dept. of Pharmacology, Sims College of Pharmacy, Mangaldas Nagar and Guntur- 522001, Andhra Pradesh, India. https://doi.org/10.5281/zenodo.17482272,

How to cite this Article: Vinjavarapu L. Anusha*, B. Ajay¹, B. Hemanth¹, A. Chiranjeevi¹, D. Sonu Naik¹, V. Vamsi Krishna1, S. K. Rafi¹, D. Hari Babu¹, S. K. Suleman Basha¹, Ikramul Hussain¹, Himadri Barmann¹. (2025). Preclinical Evidences For Potential Of Agmatine In Treatment Of Polycystic Ovarian Syndrome In Rats. World Journal of Pharmaceutical and Life Science, 11(11), 53–57.

This work is licensed under Creative Commons Attribution 4.0 International license.

Article Received on 04/10/2025

Article Revised on 24/10/2025

Article Published on 01/11/2025

ABSTRACT

Polycystic Ovarian Syndrome (PCOS) is a common endocrine disorder defined by high levels of androgens, insulin resistance, problems with ovarian function, and metabolic issues. Current treatments often have limitations or negative side effects. Agmatine, a compound made from the amino acid arginine, plays a role in regulating nitric oxide, imidazoline, and NMDA receptors, and affects oxidative stress, inflammation, and cell survival. It may serve as a potential treatment for various disorders. However, there is little preclinical evidence about agmatine's effects in PCOS, especially in rat models. This review gathers what is known from animal studies, particularly rats, about agmatine's impact on ovarian structure, hormone levels, metabolic factors, oxidative stress, and key signaling pathways in PCOS or similar conditions. We explore possible mechanisms of action, the strengths and weaknesses of current findings, and suggest future research directions. The results indicate that agmatine may help preserve the ovarian reserve, reduce oxidative stress, balance apoptosis and cell growth, and influence important pathways like mTOR, FXR-GLP-1, and nitric oxide signaling. However, there is a lack of direct studies using established rat PCOS models, and many findings rely on indirect evidence from related stress or ovarian reserve models. We conclude that agmatine holds promise in preclinical research, but thorough work using rat PCOS models is necessary before it can be used clinically

KEYWORDS: Agmatine, polycystic ovarian syndrome, PCOS Rat model, Ovarian reserve, mTOR signalling pathway, Oxidative stress, Inflammation, Reproductive dysfunction, Hormonal imbalance, Insulin resistance.

1. $INTRODUCTION^{[1]}$

PCOS overview

- o Prevalence and diagnostic criteria (high testosterone levels, irregular or absent ovulation, polycystic ovaries).
- o Related metabolic problems: insulin resistance, obesity, and abnormal lipid profiles.
- o Current treatments include lifestyle changes, metformin, and hormonal therapies; each has its limitations and side effects.

• Need for new treatments

o Address both metabolic and reproductive issues.

- o Minimize negative side effects and improve ovarian health and follicle development.
- Agmatine: background
- o Biochemistry: derived from L-arginine through arginine decarboxylase; involved in polyamine production.
- o Pharmacology: interacts with imidazoline and NMDA receptors; regulates nitric oxide (both types) and polyamines; has antioxidant, anti-inflammatory, and anticell death properties.
- o Previous studies in models of neurodegenerative diseases, diabetes, and other conditions.

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 53

Reasons to study agmatine in PCOS

- o The causes of PCOS involve oxidative stress, inflammation, imbalances in cell growth and death, hormonal irregularities, follicle dropout, and decreased ovarian reserve.
- o Agmatine's known effects may address these issues: it could regulate oxidative stress and nitric oxide, reduce inflammation, help cells survive, and potentially influence metabolic regulation.

2. Objective of review^[2]

To review preclinical animal evidence, especially in rats, about agmatine's effects related to PCOS. To evaluate the mechanisms, strengths, and gaps in knowledge, and suggest future research. Currently, direct studies using agmatine in rat PCOS models are very limited or non-existent. Most evidence is indirect, coming from models of ovarian stress, maternal separation, or metabolic disease. Below is what we know, organized by theme.

Study / Model Phenotype / Intervention Relevant Findings (ovarian, metabolic, hormonal) Mechanisms Implicated :

Maternal Separation + Social Isolation Stress (Sprague-Dawley female rats) Neonatal stress caused by maternal separation (days 2 to 21) + social isolation; compared control vs. maternal separation vs. maternal separation + agmatine (40 mg/kg, injected) for 15 days in adolescent/young adult rats. Maternal separation increased the number of primordial follicles (suggesting changes in follicle activation) and decreased ovarian reserve; the rate of follicle death increased. Agmatine treatment reduced the loss of ovarian reserve and preserved follicle structure. mTOR signaling pathway: stressed animals showed an altered mTOR pathway, important for follicle activation and survival; agmatine appears to regulate mTOR pathway proteins. This suggests agmatine helps maintain growth control in stressed follicles.

Microbial Metabolite and FXR Signaling – Mouse PCOS Model In female mice, increased Bacteroides vulgatus resulted in higher agmatine; this contributed to a PCOS-like condition by activating FXR, which decreased GLP-1 secretion and led to insulin resistance and ovarian dysfunction. Treatments included a GLP-1 agonist and an arginine decarboxylase inhibitor. High levels of agmatine were harmful, worsening insulin resistance and disrupting reproductive function in mice. This contradicts a protective role. Mechanism: agmatine → FXR activation → reduced GLP-1 secretion in L cells → metabolic issues → ovarian dysfunction. This indicates that in certain situations, or when produced in excess, agmatine can worsen PCOS features.

3. Interpretation & Theoretical Potential in PCOS $Models^{[3]}$

Based on the evidence, we can identify several ways agmatine might have benefits in rat PCOS models and areas where risks or context might matter.

Potential beneficial mechanisms

1. Preservation of ovarian reserve and folliculogenesis

- o Stress (either early in life or otherwise) or inflammation can speed up the loss of primordial follicles and increase follicular death. Agmatine preserved primordial or inactive follicles in the model involving maternal separation + social isolation, preventing excessive follicle loss.
- o Since PCOS includes issues like halted follicle growth, increased death of follicles, or abnormal ovarian structure, this preservation could be significant.

2. Regulation of mTOR pathway

o The mTOR pathway is central to cell growth, follicle activation, and survival versus cell death. The maternal separation study indicates that agmatine modifies the expression of proteins related to mTOR. This might counteract abnormal activation or inhibition in PCOS.

3. Anti-oxidative stress and anti-inflammatory effects

PCOS is marked by high oxidative stress and increased levels of pro-inflammatory cytokines. Agmatine reduces ROS and inhibits iNOS and NF-κB in many rat and mouse studies. While there isn't direct data in PCOS, these findings are highly relevant.

4. Modulation of apoptosis / proliferation

o It's important to maintain a proper balance of cell death and growth in granulosa and theca cells; PCOS shows an imbalance (too much growth in some areas and too little in others). Given agmatine's effects in non-PCOS studies to regulate cell death, it may help restore balance in ovarian tissue.

5. Impact on metabolic parameters

o While there's no direct evidence in PCOS rats, the mouse study on excess agmatine suggests it affects insulin resistance through the FXR-GLP1 pathway. Depending on the amount and context, agmatine could influence glucose metabolism and insulin sensitivity, which are key in PCOS.

6. Hormonal regulation

o Agmatine may impact testosterone production (either directly or through metabolic changes) or affect the balance of LH and FSH.

Estradiol/testosterone balance could help with hormonal dysregulation. However, direct data on hormone levels in rats under agmatine treatment for PCOS has not been reported yet.

Caveats, contradictory evidence, and risks

• The mouse study shows that elevated agmatine from the gut microbiome can worsen PCOS features. This indicates that context is important. Factors like source, tissue concentrations, timing, and regulation via FXR or the GLP-1 pathway can influence negative effects. PubMed.

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 54

- The maternal separation study is a stress model, not a classic PCOS model, such as one induced by letrozole or estradiol valerate. Therefore, the relevance of the phenotype is limited; the hormonal and metabolic features of PCOS may not be fully reflected.
- The dose, route, and timing of agmatine administration are crucial variables. The beneficial study used 40 mg/kg through intraperitoneal injection for 15 days after stress. It is unclear if similar doses, longer treatments, or different routes would work in the context of PCOS.

4. Gaps in Preclinical Evidence (Particularly in Rats) for PCOS^[4]

So far, the literature identifies the following gaps.

1. Lack of direct studies using a rat PCOS model

- There is no published study, to my knowledge, that has induced PCOS using established methods (e.g., letrozole, estradiol valerate, DHEA, high-fat diet combined with letrozole) in rats and then treated with agmatine to evaluate ovarian morphology, hormone profiles, and metabolic indices.

2. Hormonal profiling under agmatine

- Key endpoints such as serum testosterone, estradiol, LH/FSH ratios, AMH, and SHBG under agmatine treatment in PCOS models are missing.

3. Metabolic endpoints

- Measures like insulin sensitivity (e.g., HOMA-IR), glucose tolerance, and lipid profiles under agmatine treatment in rat models specific to PCOS are lacking.

4. Long-term effects and safety

- Most studies have short durations; chronic treatment effects, any negative impacts on ovarian tissue, reproductive cycles, fertility, and potential off-target effects need evaluation.

5. Mechanistic pathways specific to the PCOS rat ovary

- While mTOR, oxidative stress, and inflammation have been mentioned, detailed studies exploring agmatine's impact on granulosa cell proliferation or apoptosis, theca cell androgen synthesis, follicular arrest, stromal hyperplasia, and ovarian enzymes involved in androgen production are lacking.

6. Dose-response relationship

- Optimal dosing that is effective and safe, along with the route of administration (intraperitoneal or oral), timing (before or after PCOS onset), and duration need to be established.

7. Role of gut microbiome/systemic signals

- The mouse study shows that gut-derived agmatine can worsen PCOS through FXR and GLP-1.

5. Comparative studies with standard treatments^[5]

- For example, comparing agmatine's effects with metformin, clomiphene, letrozole, or lifestyle changes in PCOS rats.

To address these gaps, I propose the following approaches:

1. PCOS Induction and Agmatine Treatment

- Induce PCOS in female rats using letrozole, estradiol valerate, DHEA, or a high-fat diet along with these compounds to mimic both reproductive and metabolic features.
- Groups
- A. Control (no PCOS, vehicle)
- B. PCOS + vehicle
- C. PCOS + agmatine (low dose)
- D. PCOS + agmatine (high dose)
- E. PCOS + standard treatment (e.g., metformin)
- F. PCOS + agmatine + standard treatment (to assess additive or synergistic effects)
- Agmatine dosing: multiple doses (e.g., 20, 40, 80 mg/kg) administered through different routes (intraperitoneal vs. oral) over a sufficient duration (e.g., 4-8 weeks) after establishing PCOS.

2. Endpoints to Measure

- Ovarian and reproductive endpoints: ovarian weight, histology (follicle counts: primordial, primary, secondary, antral, cystic, atretic), ovarian morphology, corpora lutea count (an ovulation indicator), and estrous cycle regularity. Assess fertility if possible.
- Hormonal assays: serum testosterone, estradiol, progesterone, LH, FSH, AMH, SHBG.
- Oxidative stress/inflammation markers: ROS, MDA (malondialdehyde), SOD, GSH, catalase, proinflammatory cytokines (TNF α , IL 6), NF κB activity, iNOS, eNOS.

3. Time Points

- Early after PCOS induction (to test prevention) and after establishment (to test reversal).
- Follow up after stopping agmatine to assess durability.

4. Safety Evaluation

- Monitor general health, weight, and behavior.
- Perform histology on other organs (like the liver and kidney).
- Check for potential negative effects, like excessive suppression of normal follicle activation or disturbances in hormone balance.

Discussion/Implications

- Potential as an additional therapy: Agmatine could complement current PCOS treatments, like metformin, by focusing on oxidative stress and preserving ovarian tissue.
- Relevance to humans: Many women with PCOS experience chronic low-grade inflammation and oxidative stress. If agmatine's effects in rats are similar to human physiology, it might help reduce long-term

risks like infertility, metabolic syndrome, and ovarian aging.

- Importance of context and dose: Some models show that high endogenous agmatine is harmful, indicating a need for tightly controlled dosing and monitoring. Additionally, the administration route (oral vs. systemic) is significant.
- Possibility for biomarker development: Markers such as ovarian reserve (AMH), granulosa cell proliferation/apoptosis, and mTOR pathway activation could be used for monitoring effects.

6. METHODOLOGY^[6,9]

1. Study Design

- A controlled, randomized, experimental study evaluated the potential therapeutic effects of agmatine in a rat PCOS model. The study adhered to ethical standards for animal research and received approval from the Institutional Animal Ethics Committee (IAEC) [include approval number and institute name].

2. Animals

- Species: Female Wistar rats.
- Age and Weight: 8-10 weeks old, weighing 150-180 g.
- Housing Conditions: Rats were housed in polypropylene cages under typical laboratory conditions (temperature $22 \pm 2^{\circ}$ C, relative humidity 50-60%, 12-hour light/dark cycle).
- Diet: Standard pellet diet with water available ad libitum.
- Acclimatization Period: One week before the experimental procedures.

3. Induction of PCOS

- PCOS was induced using Letrozole, a non-steroidal aromatase inhibitor widely used and validated for inducing PCOS in rats.
- Dosage: 1 mg/kg body weight.
- Route: Oral (suspended in 0.5% carboxymethylcellulose).
- Duration: Once daily for 21 consecutive days.
- Confirmation of PCOS development on Day 22 through:
- Estrous cycle monitoring (vaginal smears).
- Serum testosterone and LH/FSH ratios.
- Ovarian morphology assessment in a subset of animals.

4. Experimental Groups

- After confirming PCOS, rats were randomly assigned to the following groups (n = 6 per group):
- Group I Control: Vehicle-treated healthy rats.
- Group II PCOS Model: Letrozole-induced rats treated with vehicle.
- Group III PCOS + Agmatine (Low Dose): Agmatine 20 mg/kg.
- Group IV PCOS + Agmatine (High Dose): Agmatine 40 mg/kg.
- Group V PCOS + Metformin (Standard treatment): Metformin 300 mg/kg.

- Group VI PCOS + Agmatine + Metformin: Combination therapy.
- Agmatine Administration: Intraperitoneal injection once daily for 28 days after confirming PCOS.
- Metformin: Administered orally once daily for 28 days.

5. Estrous Cycle Monitoring

- Daily vaginal smears were collected and stained with methylene blue to determine the stage of the estrous cycle (proestrus, estrus, metestrus, diestrus) throughout the experiment.
- Regular cycles were assessed to evaluate the recovery of reproductive function.

6. Sample Collection

- At the end of the treatment period (Day 50):
- Animals were fasted overnight and anesthetized.
- Blood samples were taken via retro-orbital plexus puncture.
- Serum was separated and stored at -20°C for hormonal and biochemical analysis.
- Ovaries and uteri were excised, weighed, and used for:
- Histopathological examination.
- Biochemical assays.
- Molecular studies (Western blot/RT-PCR).

7. Biochemical and Hormonal Analysis

- Serum Hormones: Testosterone, LH, FSH, Estradiol, Progesterone, AMH were measured using ELISA kits (manufacturer: specify).
- Insulin Resistance: Fasting glucose and insulin were used to calculate HOMA-IR.
- Lipid Profile: Total cholesterol, triglycerides, HDL, LDL.
- Oxidative Stress Markers:
- Malondialdehyde (MDA).
- Superoxide dismutase (SOD).
- Glutathione (GSH).
- Catalase.
- Inflammatory Markers: TNF- α , IL-6, NF- κ B (via ELISA or Western blot).

8. Histopathological Examination

- Ovarian tissues were fixed in 10% formalin, embedded in paraffin, sectioned (5 μ m), and stained with Hematoxylin and Eosin (H&E).
- Sections were analyzed for:
- Follicular count (primordial, primary, secondary, antral, atretic).
- Presence of cystic follicles.
- Stromal thickness.
- Corpora lutea (as an ovulation indicator).
- Microscopy was performed using a light microscope with ×40 magnification.

9. Molecular Analysis (Optional/Advanced)

- To explore mechanistic pathways:
- mTOR Pathway Proteins: Western blotting for mTOR, p-mTOR, S6K1, 4EBP1.
- Apoptosis Markers: Bax, Bcl-2, Caspase-3.

- Proliferation Markers: Ki-67, PCNA.
- NO Synthase Isoforms: eNOS, iNOS.
- FXR and GLP-1 Receptor Expression: Investigating the agmatine-gut hormone axis (optional).

10. Statistical Analysis

- Data were expressed as mean \pm standard deviation (SD).
- Statistical comparisons between groups were performed using one-way ANOVA followed by Tukey's post-hoc test
- A p-value of less than 0.05 was considered statistically significant.
- Software: GraphPad Prism 8.0 or SPSS 25.0.
- **11. Ethical Considerations:** All animal procedures complied with the guidelines of the Committee for the Purpose of Control and Supervision of Experiments on Animals (CPCSEA), Government of India and were approved by the Institutional Animal Ethics Committee (IAEC).

7. CONCLUSION

While current preclinical data suggests that agmatine may have beneficial effects on ovarian reserve, stressrelated ovarian damage, oxidative stress, and possibly metabolic parameters, there is no definitive study in rat PCOS models showing that agmatine improves reproductive, hormonal, or metabolic outcomes typical of human PCOS. A systematic experimental program as outlined above is necessary to validate agmatine's therapeutic potential, establish its safety, determine doseeffect relationships, and explore mechanisms. If these studies confirm efficacy, agmatine could address gaps in PCOS treatment, particularly for ovarian preservation and reducing oxidative or inflammatory damage. Polycystic Ovary Syndrome (PCOS) remains one of the most prevalent endocrine and metabolic disorders women of reproductive affecting age, manifestations ranging from hyperandrogenism, insulin resistance, anovulation, to long-term risks of type 2 diabetes, infertility, cardiovascular disease, endometrial carcinoma. Despite the increasing prevalence and growing burden on public health systems therapeutic strategies globally, remain symptomatic, with few options that target the root pathophysiological mechanisms of the disorder. Therefore, the exploration of novel, multi-targeted therapeutic agents remain a critical area of preclinical and translational research.

8. REFERENCES

- 1. Yun C, Yan S, Liao B, Ding Y, Qi X, Zhao M, Wang K, Zhuo Y, Nie Q, Ye C, Xia P, Ma M, Li R, Jiang C, Qiao J, Pang Y. The microbial metabolite agmatine acts as an FXR agonist to promote polycystic ovary syndrome in female mice. Nature Metabolism., 2024; 6(5): 947-962.
- 2. Yilmaz I, Yeniceri Ö, Küçükler FK, et al. The effect of maternal separation stress-induced depression on

- ovarian reserve in Sprague Dawley rats: The possible role of imipramine and agmatine through a mTOR signaling pathway. Physiology & Behavior., 2023; 269: 114270.
- 3. Hammad LN, Khalil HA-A, et al.Agmatine alleviates diabetic-induced hyposalivation in rats: A histological and biochemical study. (Study on STZ-diabetic rats, investigating gland dysfunction, oxidative stress, inflammation, but not PCOS model) 2024.
- 4. Troxerutin in PCOS rat model: Troxerutin protects against DHT-induced polycystic ovary syndrome in rats. Journal of Ovarian Research., 2020; 13: 93. (Focuses on another compound, showing effects on metabolic, hormonal, ovary morphology)
- 5. Liraglutide study: Liraglutide Improves PCOS Symptoms in Rats by Targeting FDX1. (Rat PCOS model; metabolic, hormonal, morphological outcomes) 2024.
- Dong A, Yu X, Zhang Y, Liu L, Liu F. Anti-Müllerian hormone regulates ovarian granulosa cell growth in PCOS rats through SMAD4. International Journal of Gynecology & Obstetrics. (Insight into granulosa cell apoptosis/proliferation balance in rat PCOS)
- Norman RJ, Dewailly D, Legro RS, Hickey TE. Polycystic ovary syndrome. Lancet., 2007; 370(9588): 685-697. (Classic review of PCOS pathophysiology)
- 8. Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol, 2018; 14(5): 270-284. (For definitions, diagnostic criteria)
- 9. Martel J, et al. Gut barrier disruption and chronic disease. Trends Endocrinol Metab., 2022; 33(3): 247-265. (Microbiome/metabolite influences).

www.wjpls.org Vol 11, Issue 11, 2025. ISO 9001:2015 Certified Journal 57