
Bhilave.                                                                                             World Journal of Pharmaceutical and Life Science  

 

 

 

 

 

www.wjpls.org         │        Vol 11, Issue 11, 2025.         │          ISO 9001:2015 Certified Journal         │ 

 

 

 

33 

 

 

 

 

 

A REVIEW ON BIOSTATISTICAL METHODS USED IN PHARMACOLOGY 
 

 

Prafull Gaur, Vipin Mathur
*
 

 

Lachoo Memorial College of Science & Technology (Autonomous), Sector – A, Shastri Nagar, Jodhpur. 

 

 

 

 

 

 

 

 

 

 
 

Article Received on 03/10/2025                      Article Revised on 23/10/2025                    Article Published on 01/11/2025 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

INTRODUCTION 
Robust statistical inference is the backbone of 

pharmacological research, shaping investigations from 

early-stage dose-response studies to pivotal Phase III 

trials.
[1,2]

 While the classical paradigms - Fisher’s 

significance testing and the Neyman–Pearson decision 

framework remain central to most analyses, emerging 

Bayesian methodologies and machine-learning 

approaches are increasingly influencing the field.
[5,6]

 

 

Fisher’s method treats the P-value as a continuous 

measure of evidence against a null hypothesis.
[1]

 In a 

first-in-human antihypertensive trial, for example, a 

mean systolic reduction of 8 mmHg versus placebo 

might yield P = 0.04. Fisher would interpret this not as a 

binary verdict but as ―moderate evidence‖ that the drug 

exerts a true effect, inviting replication rather than 

immediate clinical adoption.
[3,4]

 Misinterpretation, 

however equating P with the probability that the null is 

true or chasing arbitrary thresholds remains widespread 

and fuels the broader reproducibility crisis.
[5]

 

 

The N–P approach reframes inference as a formal 

decision. Investigators specify a Type I error rate (α) and 

statistical power (1 – β) before the trial begins, then 

reject or retain the null based on whether results cross the 

pre-set boundary.
[2]

 Regulatory Phase III studies typically 

adopt α = 0.05 and 80 % power, ensuring that clinically 

meaningful effects are unlikely to be missed. Yet the 

rigidity of this framework can create false dichotomies: a 

survival benefit with P = 0.051 may be dismissed despite 

potential clinical importance, while very large trials can 

yield ―significant‖ results of trivial magnitude.
[3,5]

 

 

Analysis of variance (ANOVA), long regarded as a 

cornerstone for multi-arm evaluations such as dose-

finding studies, exemplifies both the strengths and 

inherent limitations of classical statistical methods.
[1]

 By 

partitioning total variability into between- and within-

group components, ANOVA efficiently tests whether 

mean responses differ across treatments. Nonetheless, 

surveys consistently reveal widespread misuse, including 

the omission of required post-hoc tests or the 

inappropriate application of one-way ANOVA to two-
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group comparisons—errors that can compromise 

inference as severely as an underpowered trial.
[3.4]

  

 

Contemporary pharmacology increasingly complements 

traditional frequentist approaches with Bayesian 

methods, which integrate prior knowledge with emerging 

data to refine estimates of parameters of interest.
[6]

 For 

example, Bayesian population pharmacokinetic models 

enable real-time dose optimization as patient-specific 

laboratory data become available, thereby providing a 

robust foundation for model-informed precision 

dosing.
[16,18]

 

 

Taken together, these statistical approaches enable 

discovery and regulation alike. When applied carefully 

they make drug development more efficient and reliable; 

when misapplied they propagate irreproducible findings 

and, ultimately, risk patient harm. Any serious effort to 

advance pharmacology must therefore pair scientific 

innovation with continued reform in statistical education 

and practice.
[3,6]

 

 

2. CLASSICAL FRAMEWORKS OF STATISTICAL 

INFERENCE 

2.1 Fisher’s significance testing 

Ronald A. Fisher introduced the P-value in the 1920s as 

―the probability, under the assumption of the null 

hypothesis, of obtaining a result equal to or more 

extreme than what was actually observed‖.
[1]

 

 

Example 

Suppose an investigational antihypertensive yield a mean 

systolic reduction of 8 mmHg versus placebo (standard 

deviation 10 mmHg, n = 40 per group). A two-sample t-

test gives t = 2.1, P = 0.04. Under Fisher’s framework 

this is ―moderate evidence against H₀ ,‖ suggesting a 

real effect worthy of further study.
[1,3]

 

 

Advantages 

 Flexible; no need to pre-specify an alternative 

hypothesis. 

 Provides a continuous measure of evidence rather 

than a binary decision. 

 

Limitations 

 Widely misread as the probability that H₀  is true.
[3,5]

 

 Encourages dichotomous thinking around the 

arbitrary 0.05 threshold.
[5]

 

 Ignores Type II error (false negatives). 

 

2.2 Neyman–Pearson hypothesis testing 

Neyman and Pearson reframed inference as a decision 

problem.
[2]

 One specifies 

 Null hypothesis 

 Alternative hypothesis 

 Type I error rate (false positive) 

 Type II error rate (false negative) 

 

 

 

Advantages 

 Explicit control of both false positives and false 

negatives. 

 Essential for regulatory submissions. 

 

Limitations 

 Rigid binary decision: P = 0.049 is ―significant,‖ P 

= 0.051 is ―not,‖ despite negligible difference.
[3,5]

 

 Large trials can make clinically trivial effects 

statistically significant.
[3]

  

 

2.3 Analysis of Variance (ANOVA) 

ANOVA, also pioneered by Fisher, partitions total 

variability into between-group and within-group 

components.
[1]

  

 

Example 

Three doses of a novel anti-inflammatory drug are 

compared with placebo in 80 subjects. 

ANOVA tests the null hypothesis that all group means 

are equal. If F(3,76) = 5.4, P = 0.002, post-hoc Tukey 

tests identify which doses differ.
[1]

 

 

Common Misuses 

A survey of African biomedical journals found 21.4 % of 

ANOVA applications incorrect, including.
[3,4]

 

 Applying one-way ANOVA to only two groups 

(where a t-test suffices). 

 Omitting necessary post-hoc tests. 

 Failing to report the ANOVA design (one-way vs. 

two-way). 

 

2.4 Beyond the classical paradigms 

Modern pharmacology increasingly employs.
[6]

  

 Regression modelling – e.g., logistic regression for 

binary outcomes, nonlinear mixed-effects models for 

population PK/PD. 

 Bayesian inference – integrates prior knowledge 

with new data. 

 Multiple-testing corrections – Bonferroni, Holm, or 

false discovery rate procedures to control Type I 

error across many endpoints. 

 

3. Applications of Biostatistics in Modern 

Pharmacology 

Modern pharmacology rests on a diverse toolkit of 

quantitative and translational approaches that together 

accelerate the journey from molecule to medicine. 

Among these, rigorous statistical inference ensures that 

therapeutic claims are reliable, while drug repurposing 

transforms existing compounds into novel therapies with 

remarkable efficiency. Although conceptually distinct, 

these two areas share a common theme: both rely on 

extracting maximal insight from data already in hand—

whether experimental or clinical—and both illustrate 

how careful methodology can shorten the distance 

between discovery and patient benefit.
[3,4]
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3.1 Statistical foundations and their practical reach 

From the earliest dose–response experiments to the 

multinational Phase III trial, statistics provides the 

grammar through which pharmacological hypotheses are 

articulated and tested.
[1,2]

 Two classical paradigms 

dominate: Fisher’s significance testing, which treats the 

P-value as a continuous measure of evidence against a 

null hypothesis, and the Neyman–Pearson decision 

framework, which formalizes hypothesis testing as a 

balance between false positives and false negatives. 

 

Fisher’s approach is particularly influential in 

exploratory research. Suppose a first-in-human 

antihypertensive lowers mean systolic blood pressure by 

8 mmHg compared with placebo (SD = 10 mmHg, n = 

40 per arm). A two-sample t-test yields P = 0.04. Fisher 

would interpret this as ―moderate evidence‖ against the 

null hypothesis of no difference—enough to merit 

replication but not, in itself, a license for clinical 

adoption.
[1,3]

 The elegance of this framework lies in its 

flexibility; yet its very simplicity fosters 

misinterpretation. A P-value is not the probability that 

the null hypothesis is true, nor does P < 0.05 

automatically imply clinical relevance,
[5]

 Over-emphasis 

on a single threshold has contributed to the wider 

reproducibility crisis in biomedical research.
[4,5]

 

 

The Neyman–Pearson framework reframes inference as a 

decision problem. Investigators specify a Type I error 

rate (α) and a desired power (1 – β) before the trial 

begins.
[2]

 Consider a Phase III oncology study designed 

to detect a 20 % improvement in one-year survival: with 

α = 0.05 and power of 80 %, the sample size is chosen so 

that if the alternative hypothesis is correct, there is only a 

20 % chance of failing to reject the null. This structure is 

invaluable for regulatory decisions, but its rigidity can be 

misleading. A survival benefit with P = 0.051 may be 

dismissed despite clinical significance, while very large 

trials can yield ―significant‖ differences of negligible 

magnitude.
[3,5]

  

 

Beyond these paradigms, analysis of variance (ANOVA) 

remains a workhorse for multi-arm comparisons such as 

dose-finding studies.
[1]

 By partitioning total variance into 

between- and within-group components, ANOVA 

efficiently tests whether mean responses differ across 

treatments.
[3,4]

 Yet persistent misapplications—such as 

omitting post-hoc tests or applying one-way ANOVA to 

only two groups—can distort inference as surely as an 

under-powered trial. 

 

Together, these statistical frameworks—when applied 

correctly—provide the quantitative backbone of 

pharmacology, ensuring that therapeutic claims are 

reproducible and clinically meaningful. 

 

3.2 Drug repurposing: from serendipity to systems 

biology 

If rigorous statistics safeguards credibility, drug 

repurposing accelerates innovation.
[8]

 Repurposing, or 

repositioning, identifies new therapeutic uses for 

molecules with established human safety profiles. By 

leveraging existing toxicology, manufacturing, and 

pharmacokinetic data, developers can often bypass early-

phase trials, reducing cost and time to market.
[7,9]

  

 

Historical precedents reveal both the promise and the 

diverse pathways to success,
[8,9]

  

 Sildenafil was synthesized as an anti-anginal agent; 

serendipitous observations of improved erectile 

function redirected its development toward erectile 

dysfunction and later pulmonary arterial 

hypertension. 

 Amantadine, once an antiviral for influenza, 

demonstrated benefits in Parkinson’s disease 

through modulation of dopaminergic pathways. 

 Aspirin, long used for analgesia and platelet 

inhibition, continues to attract interest as a chemo 

preventive agent in colorectal and other cancers. 

 

Where early successes depended on clinical chance, 

contemporary repurposing is increasingly data-driven. 

Large electronic health-record (EHR) systems enable 

retrospective epidemiological studies that detect 

unexpected associations between drug exposure and 

disease outcomes. Transcriptomic resources such as the 

Connectivity Map (CMap) match disease-specific gene-

expression signatures with drug-induced profiles, 

suggesting compounds that may reverse pathogenic 

pathways. Network pharmacology maps complex drug–

target interactions, while machine-learning algorithms 

integrate chemical, genomic, and clinical datasets to 

predict novel drug–disease relationships at scale. 

 

Regulatory innovation has accompanied these scientific 

advances. The U.S. Food and Drug Administration’s 

505(b)(2) pathway allows approval of repurposed drugs 

on the basis of existing safety data, dramatically 

lowering barriers relative to de novo applications.
[7,8]

 The 

European Medicines Agency provides analogous hybrid 

routes. These mechanisms have enabled repurposed 

approvals in oncology, rare metabolic disorders, and 

central nervous system diseases where traditional 

pipelines lag.
[8,9]

  

 

The COVID-19 pandemic offered a stress test of the 

approach. Agents such as remdesivir, dexamethasone, 

and monoclonal antibodies were deployed or trialed at 

unprecedented speed. Not all efforts succeeded—

hydroxychloroquine, for instance, failed in large 

randomized trials despite early in-vitro promise—but the 

rapid mobilization underscored the strategic value of a 

well-curated pharmacopeia ready for redeployment. 

 

Despite these achievements, repurposing remains 

scientifically demanding. Computational predictions 

must be validated in rigorous clinical trials, and 

intellectual-property uncertainties often deter investment 

in off-patent compounds. Nevertheless, the combination 

of extensive human exposure data and modern analytics 
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ensures that repurposing will remain a central driver of 

therapeutic innovation. 

 

3.3 Post-market surveillance and pharmacovigilance 

Even the most carefully designed pre-approval trials 

cannot capture every clinically important risk.
[10,14]

 Trial 

populations are relatively small, carefully selected, and 

followed for limited periods, leaving rare, delayed, or 

population-specific adverse events undetected until a 

medicine reaches routine practice,
[10,11]

 Post-marketing 

surveillance—the systematic collection, analysis, and 

interpretation of safety data once a product is licensed—

therefore acts as the discipline’s long-term safety 

net.
[12,13]

  

 

Historical lessons. The withdrawal of rofecoxib (Vioxx) 

remains the defining example. Initially hailed as a gastro-

protective COX-2 inhibitor, it was removed from global 

markets in 2004 after meta-analyses revealed a roughly 

two-fold increase in myocardial infarction and stroke. 

Retrospective examination showed that cardiovascular 

signals were present in trial data years earlier, but 

fragmented reporting and inadequate early warning 

systems delayed action. Earlier tragedies—thalidomide-

associated teratogenicity, fen-phen–induced valvopathy, 

and the cardiac risks of rosiglitazone—underscore the 

recurring pattern: post-marketing vigilance is not 

optional.
[11]

  

 

Analytic infrastructure. Today’s pharmacovigilance relies 

on a combination of spontaneous-report systems (e.g., 

the FDA’s FAERS, WHO’s VigiBase, the EU’s 

EudraVigilance), electronic health-record mining, and 

increasingly sophisticated statistical algorithms. Signal 

detection employs disproportionality metrics such as the 

Reporting Odds Ratio (ROR) and Proportional Reporting 

Ratio (PRR), which compare the observed frequency of a 

drug–event pair to its expected frequency across the 

database. Bayesian hierarchical models and Empirical 

Bayes Geometric Mean (EBGM) estimates add 

probabilistic refinement, while trial-sequential analysis 

helps determine when cumulative evidence is sufficient 

to trigger regulatory review. 

 

Public-health impact. Active surveillance programs such 

as the U.S. Sentinel Initiative now link tens of millions 

of longitudinal patient records, enabling near real-time 

detection of safety signals. These systems have supported 

timely risk communication and label changes for 

anticoagulants, vaccines, and biologics. Their success 

illustrates how big-data analytics can transform 

spontaneous reporting into a proactive, learning health-

care system. 

 

3.4 Model-informed precision dosing (MIPD) 

Where pharmacovigilance safeguards against harm, 

model-informed precision dosing (MIPD) aims to 

maximize benefit by tailoring therapy to individual 

patients. Conventional fixed dosing assumes that a 

standard regimen is suitable for most patients, yet 

pharmacokinetic (PK) variability—from genetic 

polymorphisms to renal function—can span an order of 

magnitude.
[16,18]

 

 

Conceptual framework. MIPD integrates population 

PK/PD models with patient-specific covariates and real-

time drug-level measurements. A prior model provides 

estimates of clearance (CL), volume of distribution (Vd), 

and other parameters. As patient data accumulate, 

Bayesian updating refines the posterior distribution. 

 

Clinical examples 

 Aminoglycosides and vancomycin—narrow 

therapeutic-index antibiotics—are now routinely 

managed with Bayesian software that integrates 

patient-specific levels to target optimal AUC/MIC 

ratios. 

 In oncology, busulfan dosing guided by real-time PK 

sampling improves engraftment and reduces toxicity 

in hematopoietic stem-cell transplantation. 

 Pediatric settings, where developmental changes in 

clearance are profound, particularly benefit from 

adaptive dosing informed by sparse sampling.
[18,19]

  

 

Implementation and infrastructure. Successful MIPD 

requires validated population models, seamless 

integration with electronic health records, and clinical 

decision-support systems that can deliver dose 

recommendations at the bedside. Several commercial and 

academic platforms—BestDose, TDMx, InsightRx—are 

emerging, but widespread adoption is limited by cost, 

clinician training needs, and heterogeneous regulatory 

guidance.
[18,19]

  

 

3.5 Integrative perspective on applications 

Although presented separately, these application areas 

are mutually reinforcing. Robust statistics underpin the 

discovery and evaluation of repurposed indications, 

guide pharmacovigilance signal detection, and form the 

mathematical core of MIPD algorithms,
[14,18]

 

Repurposing efforts often rely on post-marketing safety 

and efficacy data, while insights from pharmacovigilance 

feedback to refine population models used in precision 

dosing. Collectively, these strategies exemplify a cycle of 

evidence: data from clinical practice refine statistical 

models, which in turn enable more targeted therapy and 

safer deployment of both novel and repurposed 

drugs.
[15,18]

  

 

4. Challenges 

Despite the striking advances taken place in the field of 

biostatics as described above, it still faces persistent 

scientific, regulatory, and operational barriers. These 

challenges play a crucial role in shaping the credibility of 

evidence, determining the pace of translation, and 

ultimately influencing the therapy outcomes.
[3,5]
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4.1 Statistical rigor and reproducibility 

4.1.1 Misinterpretation of the P-value 

The most frequently cited weakness is the continued 

over-reliance on P < 0.05 as a binary decision rule.
[1]

 

This threshold, rooted in Fisher’s early work, was never 

intended to demarcate truth from falsehood,
[3,5]

 Yet it is 

routinely misread as the probability that the null 

hypothesis is correct. Such misconceptions foster 

―significance chasing,‖ where investigators design 

experiments to achieve nominal significance rather than 

to estimate effect sizes with precision.
[4,5]

 The result is a 

literature populated by fragile findings that fail 

replication.
[1]

  

 

4.1.2 Pitfalls in classical tests 

The Neyman–Pearson framework, while elegant, can 

yield perverse incentives.
[2]

 Consider a cardiovascular 

outcomes trial with a prespecified α = 0.05. If the 

primary endpoint yields P = 0.051, the finding is 

declared ―negative‖ despite a clinically meaningful 

hazard ratio of 0.80. Conversely, an extremely large trial 

may detect a hazard ratio of 0.98 with P < 0.001, a result 

statistically ―positive‖ yet clinically trivial. Analysis of 

variance (ANOVA) carries its own hazards: violations of 

homoscedasticity, failure to perform post-hoc 

comparisons, and inappropriate use for two-group 

comparisons can inflate Type I error or mask true 

differences.
[1,3,4]

  

 

4.1.3 Multiple testing and data dredging 

High-dimensional omics and real-world data create 

fertile ground for false positives. Without rigorous 

control of the false discovery rate or appropriate 

Bayesian priors, exploratory analyses can produce 

apparently convincing—but ultimately spurious—

associations that misdirect resources and patient care.
[6]

  

 

4.2 Drug repurposing 

4.2.1 Intellectual-property constraints 

Because many repurposing candidates are off-patent, 

commercial incentives for large, confirmatory trials are 

weak.
[7,8]

 Sponsors may fear that competitors can market 

the same compound for the new indication with minimal 

additional investment, eroding exclusivity and profit.
[8]

  

 

4.2.2 Biological complexity and translational gaps. 

Computational predictions often fail in prospective 

studies,
[8,9]

 Transcriptomic signatures may not replicate 

across tissues; network models trained on cell-line data 

may overlook pharmacokinetic realities such as poor 

bioavailability or tissue penetration.
[8]

 Negative trials of 

hydroxychloroquine and lopinavir–ritonavir for COVID-

19 highlight how preclinical promise can evaporate 

under the scrutiny of randomized evaluation.
[8,9]

 

 

4.3 Post-market surveillance 

4.3.1 Under-reporting and data heterogeneity 

Spontaneous-report systems such as FAERS and 

VigiBase capture only a fraction of true adverse 

events,
[13,14]

 Reporting is influenced by media attention, 

litigation risk, and regional practices, creating biased 

estimates of incidence. Integrating data across national 

databases introduces additional complexity, including 

variable coding standards and privacy regulations.
[14,15]

  

 

4.3.2 Industry influence and delayed action. 

The rofecoxib episode illustrates how selective 

publication and sponsor control of trial data can delay 

recognition of harm. Even today, access to complete 

clinical-trial datasets remains inconsistent, hampering 

independent verification of safety signals.
[12,13]

 

 

4.4 Model-informed precision dosing 

4.4.1 Data and infrastructure requirements 

MIPD depends on timely laboratory results, validated 

population models, and seamless electronic health-record 

integration. Many healthcare settings lack these 

capabilities.
[16,18]

 Sparse or inaccurate sampling 

undermines Bayesian forecasting, leading to dosing 

recommendations that are no better than conventional 

weight-based methods.
[17,18]

  

 

4.4.2 Regulatory uncertainty and clinician training 

Few regulatory agencies provide detailed guidance on 

the validation and real-time use of adaptive dosing 

algorithms. Clinicians may be reluctant to trust ―black-

box‖ software, and additional training is required to 

interpret model outputs and incorporate them into busy 

clinical workflows.
[16,18,20]

  

 

4.5 Interconnected nature of the challenges 

These obstacles do not exist in isolation. Weak statistical 

practice undermines every domain—from the false 

discovery of repurposing candidates to the 

misidentification of pharmacovigilance signals and the 

mis-specification of population PK models. Conversely, 

gaps in post-market data limit the refinement of 

precision-dosing models, while intellectual-property 

barriers slow the clinical testing needed to confirm 

statistical predictions. Addressing any one challenge 

therefore requires coordinated reform across the entire 

pharmacological ecosystem.
[4,5,7]

  

 

5. Future Perspectives  

The four application domains reviewed here—rigorous 

statistical methodology, systematic drug repurposing, 

post-market surveillance, and model-informed precision 

dosing—are not discrete silos but interconnected 

components of a single, data-driven pharmacological 

enterprise. Looking forward, their convergence, 

supported by emerging technologies and regulatory 

evolution, defines the next decade of therapeutic 

innovation.
[18.20]

  

 

5.1 Methodological renewal 

The most urgent priority is a cultural and educational 

shift in the use of statistics. Journals and funding 

agencies are beginning to move beyond a binary ―P < 

0.05‖ framework toward effect-size estimation, 

confidence intervals, and Bayesian inference.
[5,6]

 Wider 



Bhilave.                                                                                             World Journal of Pharmaceutical and Life Science  

 

 

 

 

 

www.wjpls.org         │        Vol 11, Issue 11, 2025.         │          ISO 9001:2015 Certified Journal         │ 

 

 

 

38 

adoption of pre-registration, open data, and reproducible 

workflows will help address the reproducibility crisis and 

strengthen the evidentiary base for all downstream 

applications. Training programs that integrate 

pharmacology, biostatistics, and data science will be 

essential for the next generation of investigators.
[4,6]

 

 

5.2 Data integration and real-world evidence 

The growing availability of electronic health records, 

genomic sequencing, wearable devices, and patient-

reported outcomes creates unprecedented opportunities 

to close the loop between discovery and practice. 

Harmonized, privacy-protected global networks can 

enable near-real-time signal detection, refine population 

PK/PD models, and validate repurposing hypotheses on a 

scale previously impossible. The success of initiatives 

such as the U.S. Sentinel System and the European 

Health Data Space suggests that such integration is 

feasible when technical and legal standards are aligned. 

 

5.3 Incentivizing repurposing and adaptive dosing 

Economic and regulatory frameworks must evolve to 

match scientific capability. Extended market-exclusivity 

provisions, public–private partnerships, and non-profit 

development models can help overcome the intellectual-

property disincentives that currently slow repurposing of 

off-patent compounds. For MIPD, regulatory agencies 

are beginning to recognize adaptive dosing algorithms as 

part of the drug label, but formal guidance on validation 

and quality assurance is still emerging.
[18]

 Incentives for 

health-system adoption—reimbursement structures, 

integration with electronic health records, and clinician 

training—will be crucial.
[15]

 

 

5.4 Ethical and societal considerations 

As pharmacology becomes more data-intensive, 

protecting patient privacy and ensuring algorithmic 

fairness are paramount.
[14,15,19]

 Biases in training data can 

propagate inequities in drug dosing recommendations or 

in the detection of adverse events. Transparent model 

development, independent auditing, and active 

engagement with diverse patient communities will be 

essential safeguards.
[15,19]

 

 

6. CONCLUSION 

Modern pharmacology stands at a pivotal moment. 

Statistical discipline provides the foundation, drug 

repurposing extends the therapeutic arsenal, 

pharmacovigilance protects patients after approval, and 

precision dosing personalizes treatment at the bedside. 

Each component strengthens the others: surveillance data 

feed Bayesian dosing models; repurposing opportunities 

arise from post-marketing observations; rigorous 

statistics keep the entire system credible.
[14,18]

 

 

The lessons are clear. Serendipitous successes such as 

sildenafil remind us of the creative potential of 

repurposing; tragedies such as rofecoxib warn of the cost 

of inadequate surveillance; and the promise of model-

informed dosing illustrates how mathematics and clinical 

medicine can merge to benefit individual patients. 

Realizing this vision will require sustained commitment 

to statistical reform, open data, regulatory flexibility, and 

multidisciplinary education.
[15,20]

 

 

If these challenges are met, the next generation of 

pharmacology will not merely discover new drugs but 

will also ensure that every drug—new or old—is used 

more wisely, more safely, and more personally than ever 

before.
[15,18]
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