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ABSTRACT

ISSN 2454-2229

Biostatistics forms the quantitative foundation of pharmacology, enabling objective evaluation of experimental and
clinical data across all stages of drug development. It ensures scientific validity, reproducibility, and precision in
interpreting pharmacological findings through statistical tools such as hypothesis testing, regression analysis,
ANOVA, and survival analysis. Recent advances, including Bayesian modeling, adaptive clinical trial designs, and
machine learning-based analytics, have expanded its role from traditional efficacy and safety evaluation to real-
world evidence assessment and precision pharmacotherapy. The integration of biostatistical approaches in
pharmacokinetics, pharmacodynamics, and pharmacovigilance enhances decision-making and regulatory
compliance, ultimately bridging the gap between laboratory research and clinical application.
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INTRODUCTION

Robust statistical inference is the backbone of
pharmacological research, shaping investigations from
early-stage dose-response studies to pivotal Phase Il
trials."?) While the classical paradigms - Fisher’s
significance testing and the Neyman—Pearson decision
framework remain central to most analyses, emerging
Bayesian  methodologies and  machine-learning
approaches are increasingly influencing the field.®!

Fisher’s method treats the P-value as a continuous
measure of evidence against a null hypothesis. In a
first-in-human antihypertensive trial, for example, a
mean systolic reduction of 8 mmHg versus placebo
might yield P = 0.04. Fisher would interpret this not as a
binary verdict but as “moderate evidence” that the drug
exerts a true effect, inviting replication rather than
immediate clinical adoption.®*  Misinterpretation,
however equating P with the probability that the null is
true or chasing arbitrary thresholds remains widespread
and fuels the broader reproducibility crisis.

The N-P approach reframes inference as a formal
decision. Investigators specify a Type I error rate (o)) and
statistical power (1 — P) before the trial begins, then
reject or retain the null based on whether results cross the
pre-set boundary.’? Regulatory Phase 111 studies typically
adopt a = 0.05 and 80 % power, ensuring that clinically
meaningful effects are unlikely to be missed. Yet the
rigidity of this framework can create false dichotomies: a
survival benefit with P = 0.051 may be dismissed despite
potential clinical importance, while very large trials can
yield “significant” results of trivial magnitude.[3'5]

Analysis of variance (ANOVA), long regarded as a
cornerstone for multi-arm evaluations such as dose-
finding studies, exemplifies both the strengths and
inherent limitations of classical statistical methods.™ By
partitioning total variability into between- and within-
group components, ANOVA efficiently tests whether
mean responses differ across treatments. Nonetheless,
surveys consistently reveal widespread misuse, including
the omission of required post-hoc tests or the
inappropriate application of one-way ANOVA to two-
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group comparisons—errors that can compromise
inference as severely as an underpowered trial.*!

Contemporary pharmacology increasingly complements
traditional ~ frequentist approaches with Bayesian
methods, which integrate prior knowledge with emerging
data to refine estimates of parameters of interest.[’! For
example, Bayesian population pharmacokinetic models
enable real-time dose optimization as patient-specific
laboratory data become available, thereby providing a
robust foundation for model-informed precision
dosing.[*618!

Taken together, these statistical approaches enable
discovery and regulation alike. When applied carefully
they make drug development more efficient and reliable;
when misapplied they propagate irreproducible findings
and, ultimately, risk patient harm. Any serious effort to
advance pharmacology must therefore pair scientific
innovation with continued reform in statistical education
and practice.>®

2. CLASSICAL FRAMEWORKS OF STATISTICAL
INFERENCE

2.1 Fisher’s significance testing

Ronald A. Fisher introduced the P-value in the 1920s as
“the probability, under the assumption of the null
hypothesis, of obtaining a result equal to or more
extreme than what was actually observed”.™

Example

Suppose an investigational antihypertensive yield a mean
systolic reduction of 8 mmHg versus placebo (standard
deviation 10 mmHg, n = 40 per group). A two-sample t-
test gives t = 2.1, P = 0.04. Under Fisher’s framework
this is “moderate evidence against H, ,” suggesting a
real effect worthy of further study.™*

Advantages
e Flexible; no need to pre-specify an alternative
hypothesis.

e Provides a continuous measure of evidence rather
than a binary decision.

Limitations

e Widely misread as the probability that H, is true.®

e Encourages dichotomous thinking around the
arbitrary 0.05 threshold."

o Ignores Type Il error (false negatives).

2.2 Neyman-Pearson hypothesis testing

Neyman and Pearson reframed inference as a decision
problem.? One specifies

e Null hypothesis

e Alternative hypothesis

e Type | error rate (false positive)

e Type Il error rate (false negative)

Advantages
e Explicit control of both false positives and false
negatives.

o  Essential for regulatory submissions.

Limitations

¢ Rigid binary decision: P = 0.049 is “significant,” P
=0.051 is “not,” despite negligible difference."!

e Large trials can make clinically trivial effects
statistically significant.”!

2.3 Analysis of Variance (ANOVA)

ANOVA, also pioneered by Fisher, partitions total
variability into between-group and within-group
components.™

Example

Three doses of a novel anti-inflammatory drug are
compared  with  placebo in 80  subjects.
ANOVA tests the null hypothesis that all group means
are equal. If F(3,76) = 5.4, P = 0.002, post-hoc Tukey
tests identify which doses differ.!"

Common Misuses

A survey of African biomedical journals found 21.4 % of

ANOVA applications incorrect, including.?*

e Applying one-way ANOVA to only two groups
(where a t-test suffices).

e  Omitting necessary post-hoc tests.

e Failing to report the ANOVA design (one-way Vvs.
two-way).

2.4 Beyond the classical paradigms

Modern pharmacology increasingly employs.®

e Regression modelling — e.g., logistic regression for
binary outcomes, nonlinear mixed-effects models for
population PK/PD.

e Bayesian inference — integrates prior knowledge
with new data.

e  Multiple-testing corrections — Bonferroni, Holm, or
false discovery rate procedures to control Type |
error across many endpoints.

3. Applications of Biostatistics in Modern
Pharmacology
Modern pharmacology rests on a diverse toolkit of
quantitative and translational approaches that together
accelerate the journey from molecule to medicine.
Among these, rigorous statistical inference ensures that
therapeutic claims are reliable, while drug repurposing
transforms existing compounds into novel therapies with
remarkable efficiency. Although conceptually distinct,
these two areas share a common theme: both rely on
extracting maximal insight from data already in hand—
whether experimental or clinical—and both illustrate
how careful methodology can shorten the distance
between discovery and patient benefit.!**!
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3.1 Statistical foundations and their practical reach
From the earliest dose-response experiments to the
multinational Phase Il trial, statistics provides the
grammar through which Fharmacological hypotheses are
articulated and tested.™ Two classical paradigms
dominate: Fisher’s significance testing, which treats the
P-value as a continuous measure of evidence against a
null hypothesis, and the Neyman—Pearson decision
framework, which formalizes hypothesis testing as a
balance between false positives and false negatives.

Fisher’s approach is particularly influential in
exploratory  research. Suppose a first-in-human
antihypertensive lowers mean systolic blood pressure by
8 mmHg compared with placebo (SD = 10 mmHg, n =
40 per arm). A two-sample t-test yields P = 0.04. Fisher
would interpret this as “moderate evidence” against the
null hypothesis of no difference—enough to merit
replication but not, in itself, a license for clinical
adoption.™**! The elegance of this framework lies in its
flexibility;  yet its  very  simplicity  fosters
misinterpretation. A P-value is not the probability that
the null hypothesis is true, nor does P < 0.05
automatically imply clinical relevance,™ Over-emphasis
on a single threshold has contributed to the wider
reproducibility crisis in biomedical research.*!

The Neyman—Pearson framework reframes inference as a
decision problem. Investigators specify a Type | error
rate (o) and a desired power (I — B) before the trial
begins.!! Consider a Phase 111 oncology study designed
to detect a 20 % improvement in one-year survival: with
a = 0.05 and power of 80 %, the sample size is chosen so
that if the alternative hypothesis is correct, there is only a
20 % chance of failing to reject the null. This structure is
invaluable for regulatory decisions, but its rigidity can be
misleading. A survival benefit with P = 0.051 may be
dismissed despite clinical significance, while very large
trials can yield “significant” differences of negligible
magnitude. !

Beyond these paradigms, analysis of variance (ANOVA)
remains a workhorse for multi-arm comparisons such as
dose-finding studies.™ By partitioning total variance into
between- and within-group components, ANOVA
efficiently tests whether mean responses differ across
treatments.®* Yet persistent misapplications—such as
omitting post-hoc tests or applying one-way ANOVA to
only two groups—can distort inference as surely as an
under-powered trial.

Together, these statistical frameworks—when applied
correctly—provide the quantitative backbone of
pharmacology, ensuring that therapeutic claims are
reproducible and clinically meaningful.

3.2 Drug repurposing: from serendipity to systems
biology

If rigorous statistics safeguards credibility, drug
repurposing accelerates innovation.”® Repurposing, or

repositioning, identifies new therapeutic uses for
molecules with established human safety profiles. By
leveraging existing toxicology, manufacturing, and
pharmacokinetic data, developers can often bypass early-
phase trials, reducing cost and time to market.!’%!

Historical precedents reveal both the promise and the

diverse pathways to success,®!

o Sildenafil was synthesized as an anti-anginal agent;
serendipitous observations of improved erectile
function redirected its development toward erectile

dysfunction and later  pulmonary arterial
hypertension.

e Amantadine, once an antiviral for influenza,
demonstrated benefits in Parkinson’s disease

through modulation of dopaminergic pathways.

e Aspirin, long used for analgesia and platelet
inhibition, continues to attract interest as a chemo
preventive agent in colorectal and other cancers.

Where early successes depended on clinical chance,
contemporary repurposing is increasingly data-driven.
Large electronic health-record (EHR) systems enable
retrospective  epidemiological studies that detect
unexpected associations between drug exposure and
disease outcomes. Transcriptomic resources such as the
Connectivity Map (CMap) match disease-specific gene-
expression signatures with drug-induced profiles,
suggesting compounds that may reverse pathogenic
pathways. Network pharmacology maps complex drug—
target interactions, while machine-learning algorithms
integrate chemical, genomic, and clinical datasets to
predict novel drug—disease relationships at scale.

Regulatory innovation has accompanied these scientific
advances. The U.S. Food and Drug Administration’s
505(b)(2) pathway allows approval of repurposed drugs
on the basis of existing safety data, dramatically
lowering barriers relative to de novo applications.!®! The
European Medicines Agency provides analogous hybrid
routes. These mechanisms have enabled repurposed
approvals in oncology, rare metabolic disorders, and
central nervous system diseases where traditional
pipelines lag.®!

The COVID-19 pandemic offered a stress test of the
approach. Agents such as remdesivir, dexamethasone,
and monoclonal antibodies were deployed or trialed at
unprecedented speed. Not all efforts succeeded—
hydroxychloroquine, for instance, failed in large
randomized trials despite early in-vitro promise—but the
rapid mobilization underscored the strategic value of a
well-curated pharmacopeia ready for redeployment.

Despite these achievements, repurposing remains
scientifically demanding. Computational predictions
must be wvalidated in rigorous clinical trials, and
intellectual-property uncertainties often deter investment
in off-patent compounds. Nevertheless, the combination
of extensive human exposure data and modern analytics
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ensures that repurposing will remain a central driver of
therapeutic innovation.

3.3 Post-market surveillance and pharmacovigilance

Even the most carefully designed pre-approval trials
cannot capture every clinically important risk.'**! Trial
populations are relatively small, carefully selected, and
followed for limited periods, leaving rare, delayed, or
population-specific adverse events undetected until a
medicine reaches routine practice,"™**] Post-marketing
surveillance—the systematic collection, analysis, and
interpretation of safety data once a product is licensed—

therefore acts as the discipline’s long-term safety
net[!213]

Historical lessons. The withdrawal of rofecoxib (Vioxx)
remains the defining example. Initially hailed as a gastro-
protective COX-2 inhibitor, it was removed from global
markets in 2004 after meta-analyses revealed a roughly
two-fold increase in myocardial infarction and stroke.
Retrospective examination showed that cardiovascular
signals were present in trial data years earlier, but
fragmented reporting and inadequate early warning
systems delayed action. Earlier tragedies—thalidomide-
associated teratogenicity, fen-phen—induced valvopathy,
and the cardiac risks of rosiglitazone—underscore the
recurring pattern: post-marketing vigilance is not
optional.™*!

Analytic infrastructure. Today’s pharmacovigilance relies
on a combination of spontaneous-report systems (e.g.,
the FDA’s FAERS, WHO’s VigiBase, the EU’s
EudraVigilance), electronic health-record mining, and
increasingly sophisticated statistical algorithms. Signal
detection employs disproportionality metrics such as the
Reporting Odds Ratio (ROR) and Proportional Reporting
Ratio (PRR), which compare the observed frequency of a
drug—event pair to its expected frequency across the
database. Bayesian hierarchical models and Empirical
Bayes Geometric Mean (EBGM) estimates add
probabilistic refinement, while trial-sequential analysis
helps determine when cumulative evidence is sufficient
to trigger regulatory review.

Public-health impact. Active surveillance programs such
as the U.S. Sentinel Initiative now link tens of millions
of longitudinal patient records, enabling near real-time
detection of safety signals. These systems have supported
timely risk communication and label changes for
anticoagulants, vaccines, and biologics. Their success
illustrates how big-data analytics can transform
spontaneous reporting into a proactive, learning health-
care system.

3.4 Model-informed precision dosing (MIPD)

Where pharmacovigilance safeguards against harm,
model-informed precision dosing (MIPD) aims to
maximize benefit by tailoring therapy to individual
patients. Conventional fixed dosing assumes that a
standard regimen is suitable for most patients, yet

pharmacokinetic ~ (PK)  variability—from  genetic
polymorphisms to renal function—can span an order of
magnitude.!®*®!

Conceptual framework. MIPD integrates population
PK/PD models with patient-specific covariates and real-
time drug-level measurements. A prior model provides
estimates of clearance (CL), volume of distribution (Vd),
and other parameters. As patient data accumulate,
Bayesian updating refines the posterior distribution.

Clinical examples

e  Aminoglycosides and vancomycin—narrow
therapeutic-index antibiotics—are now routinely
managed with Bayesian software that integrates
patient-specific levels to target optimal AUC/MIC
ratios.

e Inoncology, busulfan dosing guided by real-time PK
sampling improves engraftment and reduces toxicity
in hematopoietic stem-cell transplantation.

e Pediatric settings, where developmental changes in
clearance are profound, particularly benefit from
adaptive dosing informed by sparse sampling.!8*°!

Implementation and infrastructure. Successful MIPD
requires validated population models, seamless
integration with electronic health records, and clinical
decision-support systems that can deliver dose
recommendations at the bedside. Several commercial and
academic platforms—BestDose, TDMX, InsightRx—are
emerging, but widespread adoption is limited by cost,
clinician training needs, and heterogeneous regulatory
guidance.l*8*9

3.5 Integrative perspective on applications

Although presented separately, these application areas
are mutually reinforcing. Robust statistics underpin the
discovery and evaluation of repurposed indications,
guide pharmacovigilance signal detection, and form the
mathematical core of MIPD  algorithms,
Repurposing efforts often rely on post-marketing safety
and efficacy data, while insights from pharmacovigilance
feedback to refine population models used in precision
dosing. Collectively, these strategies exemplify a cycle of
evidence: data from clinical practice refine statistical
models, which in turn enable more targeted therapy and
safer deployment of both novel and repurposed
drUgS.[15’18]

4. Challenges

Despite the striking advances taken place in the field of
biostatics as described above, it still faces persistent
scientific, regulatory, and operational barriers. These
challenges play a crucial role in shaping the credibility of
evidence, determining the pace of translation, and
ultimately influencing the therapy outcomes.®®
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4.1 Statistical rigor and reproducibility

4.1.1 Misinterpretation of the P-value

The most frequently cited weakness is the continued
over-reliance on P < 0.05 as a binary decision rule.l
This threshold, rooted in Fisher’s early work, was never
intended to demarcate truth from falsehood,® Yet it is
routinely misread as the probability that the null
hypothesis is correct. Such misconceptions foster
“significance chasing,” where investigators design
experiments to achieve nominal significance rather than
to estimate effect sizes with precision.™®! The result is a
literature populated by fragile findings that fail
replication.

4.1.2 Pitfalls in classical tests

The Neyman—Pearson framework, while elegant, can
yield perverse incentives.”) Consider a cardiovascular
outcomes trial with a prespecified a = 0.05. If the
primary endpoint yields P = 0.051, the finding is
declared “negative” despite a clinically meaningful
hazard ratio of 0.80. Conversely, an extremely large trial
may detect a hazard ratio of 0.98 with P < 0.001, a result
statistically “positive” yet clinically trivial. Analysis of
variance (ANOVA) carries its own hazards: violations of
homoscedasticity, failure to  perform  post-hoc
comparisons, and inappropriate use for two-group
comparisons can inflate Type | error or mask true
differences.*3

4.1.3 Multiple testing and data dredging
High-dimensional omics and real-world data create
fertile ground for false positives. Without rigorous
control of the false discovery rate or appropriate
Bayesian priors, exploratory analyses can produce
apparently  convincing—but ultimately  spurious—
associations that misdirect resources and patient care.®

4.2 Drug repurposing

4.2.1 Intellectual-property constraints

Because many repurposing candidates are off-patent,
commercial incentives for large, confirmatory trials are
weak.["® Sponsors may fear that competitors can market
the same compound for the new indication with minimal
additional investment, eroding exclusivity and profit.[

4.2.2 Biological complexity and translational gaps.
Computational predictions often fail in prospective
studies,®®! Transcriptomic signatures may not replicate
across tissues; network models trained on cell-line data
may overlook pharmacokinetic realities such as poor
bioavailability or tissue penetration.’®! Negative trials of
hydroxychloroquine and lopinavir-ritonavir for COVID-
19 highlight how preclinical promise can evaporate
under the scrutiny of randomized evaluation.®*!

4.3 Post-market surveillance

4.3.1 Under-reporting and data heterogeneity
Spontaneous-report systems such as FAERS and
VigiBase capture only a fraction of true adverse
events,** Reporting is influenced by media attention,

litigation risk, and regional practices, creating biased
estimates of incidence. Integrating data across national
databases introduces additional complexity, including

variable coding standards and privacy regulations.[****!
4.3.2 Industry influence and delayed action.
The rofecoxib episode illustrates how selective

publication and sponsor control of trial data can delay
recognition of harm. Even today, access to complete
clinical-trial datasets remains inconsistent, hampering
independent verification of safety signals.[*2*

4.4 Model-informed precision dosing

4.4.1 Data and infrastructure requirements

MIPD depends on timely laboratory results, validated
population models, and seamless electronic health-record
integration. Many healthcare settings lack these
capabilities."®*®!  Sparse or inaccurate sampling
undermines Bayesian forecasting, leading to dosing
recommendations that are no better than conventional
weight-based methods.!”*?!

4.4.2 Regulatory uncertainty and clinician training
Few regulatory agencies provide detailed guidance on
the validation and real-time use of adaptive dosing
algorithms. Clinicians may be reluctant to trust “black-
box” software, and additional training is required to
interpret model outputs and incorporate them into busy
clinical workflows. 161827

4.5 Interconnected nature of the challenges

These obstacles do not exist in isolation. Weak statistical
practice undermines every domain—from the false
discovery of repurposing candidates to the
misidentification of pharmacovigilance signals and the
mis-specification of population PK models. Conversely,
gaps in post-market data limit the refinement of
precision-dosing models, while intellectual-property
barriers slow the clinical testing needed to confirm
statistical predictions. Addressing any one challenge
therefore requires coordinated reform across the entire
pharmacological ecosystem.**"]

5. Future Perspectives

The four application domains reviewed here—rigorous
statistical methodology, systematic drug repurposing,
post-market surveillance, and model-informed precision
dosing—are not discrete silos but interconnected
components of a single, data-driven pharmacological
enterprise.  Looking forward, their convergence,
supported by emerging technologies and regulatory
evolution, defines the next decade of therapeutic
innovation, '8

5.1 Methodological renewal

The most urgent priority is a cultural and educational
shift in the use of statistics. Journals and funding
agencies are beginning to move beyond a binary “P <
0.05” framework toward effect-Size estimation,
confidence intervals, and Bayesian inference.>® Wider
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adoption of pre-registration, open data, and reproducible
workflows will help address the reproducibility crisis and
strengthen the evidentiary base for all downstream
applications.  Training  programs that integrate
pharmacology, biostatistics, and data science will be
essential for the next generation of investigators.[*®

5.2 Data integration and real-world evidence

The growing availability of electronic health records,
genomic sequencing, wearable devices, and patient-
reported outcomes creates unprecedented opportunities
to close the loop between discovery and practice.
Harmonized, privacy-protected global networks can
enable near-real-time signal detection, refine population
PK/PD models, and validate repurposing hypotheses on a
scale previously impossible. The success of initiatives
such as the U.S. Sentinel System and the European
Health Data Space suggests that such integration is
feasible when technical and legal standards are aligned.

5.3 Incentivizing repurposing and adaptive dosing
Economic and regulatory frameworks must evolve to
match scientific capability. Extended market-exclusivity
provisions, public—private partnerships, and non-profit
development models can help overcome the intellectual-
property disincentives that currently slow repurposing of
off-patent compounds. For MIPD, regulatory agencies
are beginning to recognize adaptive dosing algorithms as
part of the drug label, but formal guidance on validation
and quality assurance is still emerging.!"® Incentives for
health-system  adoption—reimbursement  structures,
integration with electronic health records, and clinician
training—will be crucial.[*!

5.4 Ethical and societal considerations

As pharmacology becomes more data-intensive,
protecting patient privacy and ensuring algorithmic
fairness are paramount.'***°! Bjases in training data can
propagate inequities in drug dosing recommendations or
in the detection of adverse events. Transparent model
development, independent auditing, and active
engagement with diverse patient communities will be
essential safeguards.*>'%

6. CONCLUSION

Modern pharmacology stands at a pivotal moment.
Statistical discipline provides the foundation, drug
repurposing  extends the  therapeutic  arsenal,
pharmacovigilance protects patients after approval, and
precision dosing personalizes treatment at the bedside.
Each component strengthens the others: surveillance data
feed Bayesian dosing models; repurposing opportunities
arise from post-marketing observations; rigorous
statistics keep the entire system credible.[***#]

The lessons are clear. Serendipitous successes such as
sildenafil remind us of the creative potential of
repurposing; tragedies such as rofecoxib warn of the cost

medicine can merge to benefit individual patients.
Realizing this vision will require sustained commitment
to statistical reform, open data, regulatory flexibility, and
multidisciplinary education.*>*"

If these challenges are met, the next generation of
pharmacology will not merely discover new drugs but
will also ensure that every drug—new or old—is used
more Wisel}/, more safely, and more personally than ever
before.['>1
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