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1. INTRODUCTION 

Drug discovery has traditionally been a lengthy, 

expensive, and uncertain process, often taking over a 

decade with an estimated cost exceeding $2.6 billion per 

approved drug.
[1]

 Despite the progress in high-throughput 

screening, combinatorial chemistry, and genomics, the 

pharmaceutical industry continues to face challenges, 

including low success rates in clinical trials and 

increasing attrition due to safety or efficacy issues.
[2]

 In 

this context, artificial intelligence (AI) and machine 

learning (ML) have emerged as transformative 

technologies in medicinal chemistry, offering the ability 

to analyse vast and complex datasets, recognize hidden 

patterns, and make data-driven predictions that enhance 

various stages of drug discovery and development.
[3]

 

These technologies enable researchers to move beyond 

traditional trial-and-error methods, making the drug 

discovery process faster, cheaper, and more precise. 

 

AI refers to the simulation of human cognitive processes 

by machines, including learning, reasoning, and 

decision-making. ML, a subfield of AI, focuses on 

algorithms that learn from data to make predictions or 

decisions without being explicitly programmed.
[4]
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increasing availability of public chemical and biological 

databases, along with advances in computational 

infrastructure such as GPUs and cloud computing, has 

fuelled the application of AI in the pharmaceutical 

sciences.
[5]

 Deep learning (DL), a subdomain of ML 

based on artificial neural networks with multiple hidden 

layers, has demonstrated remarkable success in fields 

like natural language processing, computer vision, and 

more recently, drug discovery.
[6]

 These advances have 

enabled the prediction of molecular properties, 

bioactivity, toxicity, and drug-likeness with 

unprecedented accuracy. 

 

2. OVERVIEW OF ARTIFICIAL INTELLIGENCE 

AND MACHINE LEARNING 

Artificial intelligence encompasses a broad range of 

computational strategies designed to mimic human 

intelligence. In medicinal chemistry, AI-driven tools are 

used to predict drug-target interactions, generate novel 

molecules, optimize pharmacokinetic properties, and 

facilitate synthetic planning.
[7]

 The two main branches of 

AI relevant to this field are symbolic AI and data-driven 

AI. While symbolic AI involves rule-based systems and 

logic programming, data-driven AI dominated by ML 

and DL learns directly from data patterns.
[8] 

 

Machine learning is generally classified into supervised, 

unsupervised, semi-supervised, and reinforcement 

learning. 

 

Supervised learning relies on labelled datasets where 

both input (e.g., molecular descriptors) and output (e.g., 

biological activity) are known. Algorithms such as 

support vector machines (SVMs), random forests (RFs), 

k-nearest neighbors (KNN), and gradient boosting 

machines (GBMs) are commonly applied to structure–

activity relationship (SAR) and quantitative structure–

activity relationship (QSAR) modelling.
[9] 

 

Unsupervised learning is applied when there is no 

labelled output. It is particularly useful in clustering 

chemical compounds, visualizing chemical space, and 

detecting hidden substructures in molecular datasets.
[10]

 

Techniques like k-means clustering, hierarchical 

clustering, and principal component analysis (PCA) fall 

under this category. 

 

Reinforcement learning (RL) is an advanced ML 

paradigm where an agent learns to perform tasks by 

receiving rewards or penalties from the environment. In 

medicinal chemistry, RL has been used to guide the 

design of molecules with specific desired properties, 

such as binding affinity and synthetic accessibility.
[11] 

 

Deep learning (DL) extends traditional ML by 

employing deep neural networks composed of multiple 

layers. These architectures, including convolutional 

neural networks (CNNs), recurrent neural networks 

(RNNs), and graph neural networks (GNNs), can 

automatically extract meaningful features from complex 

molecular representations such as SMILES strings, 

molecular graphs, or 3D structures.
[12]

 A significant 

component of ML success in medicinal chemistry lies in 

the proper representation of molecules. Molecular 

descriptors, fingerprints (e.g., MACCS, ECFP), graph 

representations, and tokenized sequences (e.g., SMILES) 

are commonly used to encode molecules into formats 

suitable for ML algorithms.
[13]

 Model performance is 

typically assessed using metrics like accuracy, F1 score, 

ROC-AUC, root mean square error (RMSE), and R-

squared. Best practices in ML model development also 

include cross-validation, external test sets, and 

hyperparameter tuning to prevent overfitting and 

improve generalizability.
[14]

 With access to high-quality 

datasets such as ChEMBL, PubChem, BindingDB, and 

TOX21, ML models can now be trained on millions of 

compounds and bioactivity annotations, creating 

opportunities to transform various aspects of medicinal 

chemistry.
[15] 

 

3. APPLICATIONS IN MEDICINAL CHEMISTRY 

AI and ML have demonstrated wide-ranging applications 

across the drug development pipeline, from initial hit 

identification to clinical trial design. These technologies 

are not intended to replace human intuition, but rather to 

enhance it through computational insights derived from 

large-scale data. 

 

3.1 Virtual Screening and Hit Identification 

Virtual screening (VS) is a computational method used to 

identify biologically active compounds from large 

chemical libraries. ML-based VS models, including 

random forests, SVMs, and deep neural networks, have 

demonstrated superior performance over traditional 

docking by learning nonlinear relationships between 

molecular features and activity.
[16]

 A well-known 

example is Atomwise’s AtomNet, which uses deep 

convolutional neural networks trained on 3D structural 

data to predict protein-ligand binding affinity. AtomNet 

has been successfully used to identify novel inhibitors 

against diseases such as Ebola, leukaemia, and antibiotic-

resistant bacteria.
[17] 

 

3.2 De Novo Drug Design 

De novo drug design aims to generate novel molecules 

with optimized biological and physicochemical 

properties. Generative models such as variational 

autoencoders (VAEs), recurrent neural networks (RNNs), 

and generative adversarial networks (GANs) are 

increasingly used for this task. These models learn from 

large datasets of existing molecules and generate new 

chemical structures that follow medicinal chemistry 

principles while satisfying constraints such as target 

selectivity or synthetic accessibility.
[18]

 Reinforcement 

learning has also been applied to refine the generation 

process toward specific objectives such as increased 

potency or decreased toxicity.
[19]

 

 

 

 



www.wjpls.org         │        Vol 11, Issue 9, 2025.         │          ISO 9001:2015 Certified Journal         │ 

 

 

Mahesh et al.                                                                                     World Journal of Pharmaceutical and Life Science  

 

 

 

 

 

 90 

3.3 Target Prediction and Validation 

Accurate prediction of drug-target interactions (DTIs) is 

vital for understanding mechanisms of action, side 

effects, and off-target effects. ML models trained on 

chemogenomic data can predict novel DTIs by 

integrating molecular features of drugs with protein 

features such as amino acid sequences or structural 

domains.
[20]

 Graph convolutional networks (GCNs) and 

matrix factorization techniques have been widely used in 

this domain, providing a scalable approach for 

polypharmacology analysis.
[21] 

 

3.4 QSAR and SAR Modelling 

Quantitative structure–activity relationship (QSAR) and 

structure–activity relationship (SAR) models are central 

to medicinal chemistry. ML enhances QSAR modelling 

by enabling the use of non-linear and high-dimensional 

feature spaces. Algorithms such as gradient boosting, 

support vector regression (SVR), and deep neural 

networks allow accurate predictions of activity, potency, 

and selectivity.
[22]

 Recent efforts have also introduced 

interpretable models using SHAP (SHapley Additive 

exPlanations) and LIME (Local Interpretable Model-

agnostic Explanations) to uncover key molecular features 

driving activity.
[23] 

 

3.5 ADMET Prediction 

One of the major causes of failure in drug development 

is poor pharmacokinetic or safety profiles. AI models 

trained on high-quality experimental datasets can predict 

ADMET (Absorption, Distribution, Metabolism, 

Excretion, and Toxicity) properties with high accuracy. 

For example, models developed using TOX21 data have 

been employed to predict liver toxicity, blood-brain 

barrier permeability, and hERG inhibition. Deep learning 

models such as graph attention networks and 

transformers can incorporate both chemical and 

biological context to improve prediction accuracy.
[24] 

 

3.6 Drug Repurposing 

AI and ML have been employed to identify new 

therapeutic indications for existing drugs—a strategy 

known as drug repurposing. This approach gained 

particular attention during the COVID-19 pandemic 

when ML models predicted baricitinib as a promising 

treatment for SARS-CoV-2 infection.
[25]

 NLP algorithms 

using biomedical literature, patient data, and clinical trial 

results help uncover hidden associations between drugs 

and diseases, accelerating repurposing opportunities. 

 

3.7 Reaction Prediction and Retrosynthesis 

Retrosynthetic analysis is essential for planning synthetic 

routes to drug candidates. Transformer-based models, 

such as IBM RXN and Molecular Transformer, have 

been trained on millions of reactions to predict both 

reaction outcomes and synthesis pathways. These models 

outperform rule-based systems in predicting 

regioselectivity, yield, and reaction feasibility, making 

them valuable tools for medicinal chemists.
[26] 

 

4. COMPUTATIONAL TOOLS AND PLATFORMS 

The implementation of AI and ML in medicinal 

chemistry relies heavily on robust computational tools 

and platforms. These resources enable chemists and data 

scientists to build predictive models, manipulate 

chemical structures, and simulate complex biochemical 

interactions. This section categorizes these resources into 

open-source libraries, cheminformatics tools, and 

commercial AI-driven platforms. 

 

4.1 Open-Source Libraries: Open-source machine 

learning libraries have played a foundational role in 

enabling the application of AI techniques in medicinal 

chemistry. Among the most widely used are. 

 Scikit-learn: A Python-based library offering a rich 

suite of supervised and unsupervised learning 

algorithms. Scikit-learn is especially useful for basic 

classification, regression, clustering, and 

dimensionality reduction tasks. Its user-friendly API 

and compatibility with other Python libraries like 

NumPy and Pandas make it ideal for rapid 

prototyping in cheminformatics. 

 TensorFlow: Developed by Google Brain, 

TensorFlow provides a flexible platform for 

designing and deploying large-scale deep learning 

models. It supports both CPU and GPU 

computation, which is particularly important when 

training complex models on large molecular 

datasets. 

 PyTorch: Created by Facebook’s AI Research lab, 

PyTorch is widely appreciated for its dynamic 

computation graph and ease of debugging. It is 

increasingly favoured for research in deep learning 

applications, including drug–target interaction 

modelling and graph-based neural networks used in 

molecular property prediction.
[27]

 These libraries 

serve as the backbone for algorithm development, 

allowing researchers to customize model 

architectures for specific medicinal chemistry tasks. 

 

4.2 Cheminformatics Tools: To translate molecular 

structures into machine-readable formats, 

cheminformatics tools are essential. These tools bridge 

the gap between raw molecular data and machine 

learning models. 

 RDKit: A widely-used open-source toolkit that 

offers capabilities such as molecule visualization, 

descriptor calculation, structure standardization, and 

substructure searching. RDKit is often integrated 

into ML workflows for feature extraction and 

compound filtering. 

 Open Babel: A chemical toolbox that facilitates the 

interconversion of chemical file formats (e.g., 

SMILES, SDF, MOL). It supports various structure 

manipulation and optimization functions that are 

critical for pre-processing in virtual screening. 

 DeepChem: A deep learning framework specifically 

tailored for drug discovery and cheminformatics. 

Built on TensorFlow, DeepChem provides ready-to-

use models for tasks like molecular property 
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prediction, protein–ligand binding affinity 

estimation, and toxicity classification.
[28]

 These tools 

allow the encoding of chemical knowledge into 

numerical features, making them indispensable for 

data-driven research in medicinal chemistry. 

 

4.3 Commercial Platforms: In addition to open-source 

resources, several biotechnology and AI-focused 

companies have developed proprietary platforms that 

integrate ML into various stages of drug development: 

 Benevolent AI: Focuses on using knowledge graphs 

and deep learning to uncover novel drug–disease 

relationships. Its platform leverages biomedical 

literature, genomic data, and clinical trial data to 

generate new hypotheses for drug repurposing and 

target discovery.
[29]

 

 

These platforms highlight the translational impact of AI 

in the pharmaceutical industry, offering not only 

predictive models but also integrated solutions that 

streamline the path from molecule design to clinical 

validation. 

 

5. CASE STUDIES 

5.1 Atomwise and AtomNet 

Atomwise has been a pioneering force in the application 

of deep learning for drug discovery. Its platform, 

AtomNet, utilizes convolutional neural networks to 

predict the bioactivity of small molecules based on their 

three-dimensional structural information. One of the 

hallmark successes of AtomNet includes the 

identification of potent inhibitors for Ebola virus 

proteins, where the system screened millions of 

compounds and produced high-probability candidates 

within days.
[30]

 These compounds later demonstrated 

significant activity in in-vitro studies, showcasing the 

speed and predictive power of AI-driven approaches in 

crisis situations. 

 

5.2 Exscientia 

Exscientia is a UK-based pharmaceutical AI company 

known for integrating AI with medicinal chemistry 

design principles. In 2020, Exscientia announced the 

development of a selective serotonin 5-HT1A receptor 

agonist, which was designed, optimized, and advanced to 

human clinical trials in less than 12 months, a significant 

reduction from the industry average of 4–5 years.
[31]

 This 

achievement demonstrates how AI platforms can 

optimize lead identification, synthetic accessibility, and 

pharmacological profiling simultaneously. 

 

5.3 IBM Watson for Drug Discovery 

IBM Watson applies natural language processing (NLP) 

and graph analytics to mine scientific literature, clinical 

trial databases, and biomedical datasets. In a repurposing 

study, Watson identified previously overlooked 

molecules with potential applications in oncology and 

infectious diseases.
[32]

 One example includes Watson's 

role in identifying potential repurposed therapies for 

glioblastoma, showcasing how AI can accelerate 

hypothesis generation by integrating diverse data 

sources. 

 

6. CHALLENGES IN AI IMPLEMENTATION 

6.1 Data Quality and Quantity 

AI models, especially supervised learning algorithms, 

demand large volumes of clean, annotated data. In the 

pharmaceutical domain, datasets are often imbalanced, 

with few active compounds compared to inactive ones. 

Moreover, experimental errors and inconsistent bioassay 

formats can introduce noise, negatively impacting model 

performance.
[33]

 Additionally, the lack of negative data 

(e.g., failed experiments) limits AI models from learning 

complete decision boundaries. 

 

6.2 Interpretability 
AI systems particularly deep neural networks (DNNs) 

are often criticized for their lack of transparency. These 

models function as black boxes, making it difficult for 

chemists and regulators to understand why a model made 

a particular prediction.
[34]

 This limitation poses serious 

challenges when AI-generated predictions are used in 

clinical or regulatory decision-making, where 

explainability is essential. 

 

6.3 Integration with Traditional Chemistry 

While AI models offer impressive capabilities, they must 

be used to complement the domain knowledge of 

medicinal chemists rather than replace it. Seamless 

integration of AI platforms into drug discovery 

workflows, including synthetic route planning, SAR 

interpretation, and ADMET optimization, remains 

underdeveloped.
[35]

 Moreover, many chemists lack the 

computational expertise required to interact effectively 

with ML models, leading to underutilization. 

 

6.4 Ethical and Regulatory Considerations 

AI-driven research raises concerns about data privacy, 

patient consent, and algorithmic bias. For example, 

training data that underrepresents certain populations can 

lead to models that are biased or unreliable for minority 

groups.
[36]

 Moreover, regulatory frameworks (e.g., FDA, 

EMA) currently lack standardized guidelines for AI 

validation, making it challenging to get AI-developed 

drug candidates through regulatory approval pipelines. 

 

7. RECENT ADVANCES 

7.1 Transfer Learning 
Transfer learning is an emerging solution to the problem 

of limited data. In this approach, a model trained on a 

large, general-purpose dataset is fine-tuned on a smaller, 

domain-specific dataset. This methodology has shown 

substantial improvements in QSAR modelling, protein–

ligand interaction predictions, and bioactivity 

forecasting.
[37]

 It enables the reuse of computational 

knowledge across different chemical or biological 

domains, significantly improving model accuracy. 
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7.2 Federated Learning 

Federated learning allows multiple organizations (e.g., 

pharmaceutical companies, hospitals) to collaboratively 

train a model without sharing sensitive data. Each entity 

retains its own data locally and only shares the model 

updates, preserving privacy while enabling learning 

across larger datasets.
[38]

 This paradigm is gaining 

traction in multi-institutional drug repurposing studies 

and pharmacovigilance applications. 

 

7.3 Explainable AI (XAI) 

Explainable AI (XAI) techniques are being developed to 

enhance the interpretability of AI predictions. Tools such 

as SHAP (SHapley Additive exPlanations), LIME (Local 

Interpretable Model-Agnostic Explanations), and 

attention visualization in neural networks allow users to 

identify which features most influenced a model’s 

decision. XAI is crucial for building trust among end-

users (e.g., medicinal chemists) and meeting regulatory. 

 

8. FUTURE PERSPECTIVES 

The integration of AI and ML with quantum computing, 

multi-omics data, and synthetic biology will reshape the 

landscape of drug discovery. For instance, quantum ML 

algorithms can enable the accurate simulation of 

complex molecular interactions beyond the capabilities 

of classical computing.
[39]

 Likewise, multi-omics 

integration (genomics, proteomics, metabolomics) using 

AI will facilitate the discovery of personalized medicines 

and biomarkers. In the near future, AI tools will evolve 

from being just predictive engines to interactive design 

platforms, assisting chemists in real-time during 

molecular design. Interdisciplinary collaboration 

between data scientists, regulatory agencies, and bench 

chemists is key to overcoming current limitations and 

democratizing AI access across small and large pharma 

alike.
[40]

 

 

9. CONCLUSION 

AI and ML technologies have become indispensable in 

modern medicinal chemistry, enabling faster, more 

efficient, and more intelligent drug discovery pipelines. 

From virtual screening and lead optimization to toxicity 

prediction and compound design, AI enhances nearly 

every stage of drug development. This review aims to 

provide an in-depth analysis of the role of AI and ML in 

medicinal chemistry, beginning with a conceptual 

overview and then delving into their specific applications 

in drug discovery, design, screening, and optimization. 

Though challenges such as data quality, interpretability, 

and ethical concerns persist, recent innovations like 

transfer learning, federated models, and explainable AI 

offer promising solutions. The future of drug discovery 

lies at the convergence of chemical expertise, 

computational innovation, and ethical oversight, with AI 

poised to serve as a powerful catalyst for pharmaceutical 

advancement. 
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