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1. Introduction to Environmental remediation 

The 21
st
 century has brought significant environmental 

difficulties, which include pollution of the air, water, and 

soil to natural resource depletion and biodiversity loss. In 

response to these serious concerns, the scientific 

community has increasingly turned to nanotechnology as 

a possible method of environmental rehabilitation.
[1, 2]

 

Nanomaterials, defined by their distinct physical, 

chemical, and biological characteristics at the nanoscale, 

provide fresh options for combating environmental 

degradation and restoring ecological balance.
[3, 4] 

 

The use of nanostructures in environmental remediation 

signifies a paradigm change in how we handle resource 

management and pollution reduction. While traditional 

remediation methods can include expensive treatment 

plans, long treatment durations, and low efficacy, 

nanotechnology offers prospects for more effective, 

economical, and long-lasting solutions. Through the 

utilization of nanostructures' exceptional characteristics, 

including their elevated reactivity, adjustable surface 

chemistry, and high surface area-to-volume ratio, 

scientists are introducing novel strategies to tackle an 

extensive array of environmental pollutants. 

Nanoparticle-based remediation is at the forefront of 

environmental nanostructures.
[5, 6]

 Nanoparticles, which 

are particles with size on the nanometre scale, have 

special features that make them extremely effective at 

pollution removal and destruction. Engineered 

nanoparticles, such as metal oxides (e.g., titanium 

dioxide, zinc oxide), carbon-based nanomaterials (e.g., 

graphene, carbon nanotubes), and quantum dots, have 

exceptional catalytic, adsorptive, and photocatalytic 

properties, allowing for the efficient removal of 

contaminants like heavy metals, organic pollutants, and 

pathogens from air, water, and soil.
[7,  8]
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Nanostructure-based environmental remediation is a 

dynamic and quickly developing topic that has the 

potential to completely change how we deal with 

pollution in the environment and protect the world for 

coming generations. Researchers are in a position to 

create ground-breaking solutions that reduce pollution, 

rebuild ecosystems, and advance sustainable 

development by utilizing the special qualities of 

nanostructures and welcoming multidisciplinary 

cooperation. Transition metal oxide nanomaterials, 

especially zinc oxide (ZnO), have attracted a lot of 

interest lately due to their regulated microstructure and 

morphology, which open up a world of better qualities 

that may be used in many different applications.
[9 – 11]

  As 

a direct wide band-gap semiconductor, ZnO is unique in 

that it has a low crystal growth process, a high exciting 

binding energy, and is reasonably priced. Its 

physicochemical characteristics, including as its high 

transparency, UV excitation, anti-radiation stability, and 

room-temperature piezoelectricity, make it a flexible 

option for a range of uses. Utilizing ZnO's photoelectric, 

photochemical, and redox capabilities has become a 

viable option for resource and environmental 

applications in response to growing energy crises and 

environmental concerns.
[12, 13]

 Widespread application in 

energy storage, electronics, optics, and photocatalysis is 

made possible by the broad variety of ZnO 

nanostructures and combinations, which provide multi-

dimensional morphologies with previously unheard-of 

diversity and control. ZnO's photocatalytic ability for 

environmental clean-up is gaining attention, which is 

noteworthy. Presumably, a paradigm shift toward 

sustainable solutions is reflected in the notable increase 

in annual publications including the use of 

photocatalysis. Zinc oxide (ZnO) is essential for solving 

modern problems, as demonstrated by the shift to 

photocatalytic uses in environmental situations.
[14 – 16] 

 

However, typical free-standing forms of ZnO, such as 

powders or nanoparticles, have inherent limitations, 

including agglomeration and secondary contamination 

concern. To overcome these limitations, researchers have 

used immobilized versions of ZnO and attached them to 

recyclable substrates for increased efficiency and 

environmental friendliness. This sector focuses on the 

controlled development of immobilized ZnO 

nanostructures using readily recyclable substrates such as 

glass plates, metal foils, silicon wafers, and flexible 

polymer sheets. This review summarizes our 

contributions and a few scholarly papers that outline the 

state-of-the-art for immobilized ZnO nanostructures and 

their environmental applications. Interestingly, the study 

only includes materials that are backed by recyclable 

substrates, so it is both realistic and sustainable. The 

synthesis process's substrate-independence is further 

highlighted by the use of seed layers, which improves 

scalability and repeatability.
[17 – 20] 

 

 

 

1.1. Over view of Environmental pollution 

Environmental pollution is a complex and widespread 

issue that endangers ecosystems, human health, and the 

planet's general well-being. It refers to the pollution of 

air, water, soil, and living beings by numerous pollutants 

caused by human activities, industrial operations, 

agricultural practices, and natural events. From heavily 

crowded metropolitan centres to distant wilderness 

regions, no corner of the Earth is immune to the effects 

of pollution, emphasizing the critical need for 

coordinated global action to address this grave crisis.
[21 – 

23] 

 

1.1.1. Air Pollution 

Air pollution is defined as the presence of dangerous 

pollutants in the Earth's atmosphere, including 

particulate matter, nitrogen oxides, sulfur dioxide, 

volatile organic compounds, and heavy metals. It comes 

from car emissions, industrial activity, agricultural 

burning, and fossil fuel combustion for electricity 

generation.
[24, 25]

 Air pollution can harm respiratory 

health, cardiovascular function, and general well-being, 

causing respiratory disorders, heart attacks, strokes, and 

early death. Furthermore, air pollution contributes 

significantly to climate change by worsening global 

warming through the emission of greenhouse gases and 

aerosols.
[26, 27] 

 

1.1.2. Water Pollution 

Water pollution occurs when pollutants such as industrial 

chemicals, agricultural runoff, sewage, and plastic trash 

degrade the quality of freshwater bodies including rivers, 

lakes, and groundwater reservoirs. Water contamination 

is caused mostly by discharges from industrial sites, 

inappropriate waste disposal methods, and urban runoff. 

Contaminated water is hazardous to human health, 

causing waterborne illnesses such as cholera, typhoid 

fever, and dysentery. Furthermore, aquatic ecosystems 

incur negative consequences such as habitat degradation, 

biodiversity loss, and food chain disruptions, which 

contribute to ecological imbalances and fish stock 

decreases.
[28, 29] 

 

1.1.3. Soil Pollution 

When dangerous materials, such as pesticides, heavy 

metals, and industrial chemicals, build up in the soil, it 

becomes unfit for farming, plant development, and 

ecosystem function. This condition is referred to as soil 

pollution, often called land contamination. Industrial 

production, mining, inappropriate waste disposal, and 

chemical fertilizer and pesticide usage in agriculture are 

some of the activities that lead to soil contamination. 

Through direct contact, eating contaminated food, and 

the transmission of pollutants to groundwater sources, 

polluted soils provide health concerns to humans. 

Moreover, the deterioration, erosion, and loss of arable 

land caused by soil contamination endanger ecosystem 

resilience and food security.
[30 – 32]
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1.1.4. Noise Pollution 

Noise pollution is the term used to describe excessive or 

undesired noises that disturb the natural environment and 

lead to stress, irritation, and hearing loss in both people 

and wildlife. Transportation-related noise pollution 

comes from railroads, airplanes, and cars as well as from 

factories, building sites, and leisure-related noise 

pollution such concerts and athletic events. Long-term 

excessive noise exposure can have negative health 

impacts, such as elevated blood pressure, insomnia, 

memory loss, and communication difficulties. Noise 

pollution also compromises biodiversity and the stability 

of ecosystems by upsetting wildlife habitats, changing 

animal behaviour, and interfering with mating calls and 

navigation.
[33 – 35] 

 

1.1.5. Nutrient Pollution 

Nutrient pollution in agriculture stems from excessive 

use of chemical fertilizers and improper management of 

livestock manure. Chemical fertilizers can runoff into 

water bodies, causing nutrient imbalances and promoting 

algal growth. Similarly, inadequately handled livestock 

waste releases nutrients, pathogens, and antibiotic 

residues into the environment, contaminating water 

sources and exacerbating algal blooms. Effective nutrient 

management and proper waste disposal are crucial for 

mitigating this pollution and safeguarding water quality. 

 

1.1.6. Light Pollution 

Light pollution, also known as photo pollution, arises 

when artificial light sources generate excessive or 

misdirected light, interfering with natural darkness, 

obscuring celestial visibility, and disrupting circadian 

cycles in humans and animals. Light pollution is 

commonly caused by urban streetlights, business signs, 

outdoor advertising, and industrial operations.
[36, 37]

 The 

widespread glare of artificial light at night not only 

obscures the stars and celestial bodies, but it also 

interrupts nocturnal wildlife behaviour, distorts 

migratory patterns, and alters ecosystems' natural cycles. 

 

 

 
Figure 1: Environmental Pollution "Stop Pollution, Save the Earth". 

 

Furthermore, light pollution has a negative impact on 

human health, leading to sleep problems, disrupting 

melatonin synthesis, and increasing the risk of obesity, 

diabetes, and several malignancies.
[38, 39] 

 
Global health, biodiversity, and sustainable development 

are generally seriously threatened by environmental 

degradation, which makes it imperative to take 

immediate action to lessen its effects and encourage 

environmental stewardship. Environmental 

contamination is depicted in Fig. (1) along with methods 

for its remediation, reuse, and reduction. 

Multidisciplinary strategies, cutting-edge technology, 

and cooperative alliances between businesses, 

governments, civil society groups, and private citizens 

are all necessary to combat pollution. We can preserve 

the Earth's ecosystems, safeguard human health, and 

ensure a more resilient and sustainable future for future 

generations by putting pollution prevention measures 

into place, adopting cleaner production methods, 

supporting renewable energy sources, and embracing 

sustainable lifestyles.
[40 – 43]

 

 

2.  Nanotechnology Application for environmental 

and agricultural remediation 

The term "Nanotechnology in Environmental 

Remediation" describes the use of materials and 

procedures at the nanoscale to the problem of 

environmental contamination and pollution. Because of 

their special qualities, nanomaterials—such as 
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nanoparticles and nanocomposites—are very useful in 

eliminating contaminants from soil, water, and the air. 

Through the utilization of nanomaterials' large surface 

area, reactivity, and catalytic properties, scientists may 

create novel approaches to address remediation problems 

such as organic pollutant degradation, heavy metal 

removal, and polluted environment purification. 

Nanotechnology presents viable paths for effective and 

sustainable environmental restoration, with the ability to 

reduce pollution, save ecosystems, and improve human 

health.
[44 – 46] 

 

"Nanotechnology in Environmental Remediation" is a 

modern strategy for dealing with the ubiquitous and 

intricate problems of environmental contamination and 

pollution. In order to take advantage of special qualities 

and phenomena that appear at this size, nanotechnology 

entails manipulating matter at the nanoscale, which is 

normally measured in nanometres, ranging from 1 to 

100. Nanotechnology presents previously unheard-of 

chances to create effective, affordable, and long-lasting 

solutions for reducing pollution, repairing ecosystems, 

and preserving human health in the context of 

environmental restoration.
[47 – 49]

 Due to their 

impressively high surface area-to-volume ratio, which 

allows for improved reactivity and adsorption 

capabilities over bulk materials, nanoparticles are 

advantageous in environmental clean-up. A broad range 

of contaminants may be effectively removed from air, 

water, and soil by using nanoparticles, which include 

metal oxides (such as titanium dioxide, iron oxide), 

carbon-based nanomaterials (such as graphene, carbon 

nanotubes), and nanocomposites. These nanoparticles 

have special physicochemical features.
[50 – 52]

 The 

removal of organic contaminants, heavy metals, and 

recently found poisons from groundwater and 

wastewater sources are just a few of the water 

remediation issues that nanotechnology may help with. 

Nanoparticles may be engineered to selectively adsorb or 

catalyse the breakdown of contaminants, making their 

removal from aquatic environments simpler. Moreover, 

nanomaterial-based membranes and filters offer efficient 

methods of purifying water by trapping impurities 

selectively and allowing only pure water molecules to 

flow through.
[53, 54]

 Nanotechnology is essential to the 

development of sophisticated materials and systems used 

in air remediation to capture particulate matter, volatile 

organic compounds (VOCs), and other air contaminants. 

Through catalytic oxidation or reduction processes, 

catalysts based on nanoparticles can aid in the 

decomposition of hazardous gasses and produce less 

toxic by-products. Additionally, the use of nanoparticles 

into air filtration systems can improve the effectiveness 

of pollution absorption and extend the life of filters. 

Furthermore, by enabling the targeted delivery of 

remediation agents to polluted locations and aiding the 

breakdown or immobilization of contaminants in soil 

matrix, nanotechnology offers potential for soil 

remediation. By interacting with soil pollutants, 

functionalized nanoparticles with certain surface coatings 

or ligands might facilitate their sequestration or change 

into less hazardous forms. Furthermore, the utilization of 

nanomaterials can be combined with soil amendments or 

bioremediation methods to improve remediation 

effectiveness and quicken the process of pollutant 

breakdown.
[55 – 57]

 

 

 
Figure 2: Different applications of Nanotechnology. 

 

However, there are obstacles and factors to take into 

account with regard to environmental health and safety, 

as well as the long-term effects of nanomaterials on 

ecosystems and human health, coupled with the 
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enormous potential of nanotechnology in environmental 

rehabilitation. Fig. (2), defines different applications of 

nanotechnology for the remediation of environment to 

make it clean and less harmful. Ensuring the safe and 

sustainable deployment of nanotechnology for 

environmental remediation requires the implementation 

of regulatory frameworks, responsible nanomaterial 

design and production methods, and comprehensive risk 

assessments. By utilizing the special qualities of 

nanoparticles, nanotechnology provides a revolutionary 

method of environmental rehabilitation, generating 

creative solutions to problems with contamination and 

pollution.
[58-59]

 Researchers and practitioners may 

contribute to the creation of more sustainable, healthy, 

and clean ecosystems for current and future generations 

by utilizing the potential of nanotechnology.
[60-64]

 

Nanotechnology has emerged as a potent tool for 

agricultural remediation, providing novel solutions to 

environmental issues while supporting sustainable 

farming practices. Nanomaterials, including 

nanofertilizers, nano sensors, and nano pesticides, serve 

critical roles in improving soil health, optimising nutrient 

management, and reducing pollution. Nano fertilizers use 

controlled release methods to provide accurate nutrient 

delivery, improve plant development, and reduce 

environmental impact. Nano sensors give real-time data 

on soil and crop health, allowing for more informed 

decisions about irrigation, fertilisation, and pest control. 

Nano pesticides provide effective pest control with less 

environmental harm than traditional chemical pesticides. 

Furthermore, nanomaterials such as zero-valent iron 

nanoparticles hold potential for soil remediation by 

effectively immobilising pollutants and restoring soil 

fertility.
[65-68] 

 

3. Biomedical Applications of Zinc Oxide 

Nanoparticles (ZnO NPs) 

3.1. Cancer Treatment and Diagnosis 

Conventional cancer treatments often face limitations 

like low bioavailability and severe side effects. Modern 

therapies, including the use of nanoparticles, offer 

promising solutions.
[69]

 Zinc oxide nanoparticles (ZnO 

NPs) are particularly noteworthy for their ability to 

generate reactive oxygen species (ROS), improve 

permeability, and retain in tumor sites, making them 

effective in cancer treatment.
[70-71] 

 

 Key Study: Singh et al. developed hybrid nano 

systems combining chymotrypsin protein with 

AzureC (AzC) and ZnO NPs.
[72]

 These 

nanoconjugates showed significant cytotoxic effects 

against A-549 adenocarcinoma cells and potential 

for phototherapies.
[73]

 

 Dose and Size Sensitivity: Research by Sarkar et al. 

emphasized that cytotoxicity depends on 

nanoparticle dose, exposure duration, cell type, and 

size.
[74-76]

 

 

 

 

3.2. Wound Healing 

Burn wound treatment remains challenging, especially 

with multidrug-resistant infections.
[77]

 ZnO and silver 

nanoparticles (Ag NPs) embedded in nanocomposites 

like gluten films with vitamins A and E have shown 

antibacterial and antioxidant properties.
[78]

 Advanced 

wound dressings using herbal-extracted ZnO NPs also 

demonstrated dual antibacterial properties, enhancing 

healing.
[79-80] 

 

3.3. Cosmetic Applications 

Nanoparticles, especially ZnO NPs, are widely used in 

sunscreens and skin care products for their UV 

protection capabilities.
[81-83]

 

 Safety Concerns: While healthy skin has minimal 

NP penetration, damaged skin may allow increased 

absorption, potentially causing irritation or 

sensitization. Researchers advise cautious use of 

ZnO NPs in cosmetics.
[84-85]

 

 

3.4. Antimicrobial Activity 

ZnO NPs are effective against both Gram-positive and 

Gram-negative bacteria due to their ability to generate 

ROS and disrupt bacterial membranes.
[86]

 

 Green Synthesis: Yang et al. synthesized 

antibacterial ZnO clusters via an eco-friendly 

process, enhancing bioactivity and bactericidal 

effects.
[87-88]

 

 Enhanced Formulations: Sodium-doped ZnO NPs 

showed increased antibacterial and antifungal 

activities, while studies demonstrated mosquito 

control applications for dengue prevention.
[89]

 

 

3.5. Biofilm Inhibition 

Biofilms contribute to persistent infections on medical 

devices. ZnO NPs synthesized through green methods 

demonstrated significant biofilm destruction by 

disrupting microbial components.
[90-91]

 

 Improved Materials: Tin-doped ZnO 

nanostructures exhibited superior antibiofilm 

activity, especially against Staphylococcus aureus, 

making them suitable for use in cosmetics and 

medical products.
[92-93]

 

 

3.6. Environmental and Agricultural Applications 

(a) Sustainable Farming 

ZnO NPs, synthesized using endophytic bacteria, serve 

as biofertilizers, improving crop growth, protein content, 

and chlorophyll levels. Lime-waste-derived ZnO NPs 

also enhance agricultural yields and pest resistance.
[94-96] 

 

(b) Environmental Concerns 

Excessive ZnO NP use poses risks to ecosystems. 

Studies reveal their toxic effects on aquatic life, soil 

bacteria, and plant growth. For example, ZnO NPs 

altered microbial populations in soil and reduced algae 

productivity, impacting aquatic food webs.
[95-96] 
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3.7. Industrial Applications: Dye Removal 

ZnO NPs are pivotal in wastewater treatment, 

particularly in adsorbing and degrading toxic dyes like 

Congo Red. Manganese-doped ZnO and composite 

materials demonstrated improved dye removal and cost-

effective manufacturing processes.
[97] 

 

4. Biological/Green Synthesis Methods for ZnO - NPs 

Biological synthesis, also referred to as "green 

synthesis," represents a promising and environmentally 

friendly alternative to conventional chemical and 

physical methods for nanoparticle (NP) production. Zinc 

oxide nanoparticles (ZnO-NPs) have historically been 

used in food additives, dietary supplements, and 

medicinal applications. This green approach employs 

safe reagents, such as water and natural extracts, 

avoiding hazardous chemicals and offering an innovative 

route for NP synthesis.
[97-99]

 The advancements in 

nanobiotechnology have enabled the production of ZnO-

NPs using biotechnological methods, presenting 

significant potential for medical applications.
[100]

 

 

Biological pathways utilizing proteins, DNA, plants, or 

plant-derived extracts (e.g., roots, stems, leaves, flowers, 

and fruits) have been extensively explored as sustainable 

substitutes for chemical and physical synthesis 

methods.
[101]

 These biological methods leverage the 

biochemical and enzymatic pathways in microorganisms 

to produce ZnO-NPs. For instance, proteins, amino acids, 

DNA, enzymes, phages, and marker genes in 

microorganisms play crucial roles. DNA, in particular, 

acts as a guiding framework for the controlled synthesis 

and growth of ZnO-NP chains.
[102-103] 

 

This biotechnological approach has demonstrated great 

promise in various biological applications, including bio-

labeling, cell culture, gene delivery, drug delivery, and 

nanomedicine.
[104]

 

 

4.1. Plant-Mediated Synthesis of ZnO-NPs 

Plant-mediated synthesis is an eco-friendly alternative to 

traditional chemical methods, leveraging plants and their 

extracts for ZnO-NP production.
[105]

 This method is 

appealing due to its simplicity, safety, and avoidance of 

harmful reagents. The process typically involves the 

following steps. 

 

1. Preparation of Plant Extracts: 

o Selected plant materials (e.g., tomato fruits, 

chamomile flowers, olive leaves) are rinsed with 

double-distilled water and air-dried.
[107]

 

o The dried materials are ground into powder, and 200 

mL of water is used to extract the bioactive 

compounds at 60–70°C for 4 hours.
[108-109]

 Showing 

in Fig. 3. 

o The extract is then cooled to room temperature and 

filtered using filter paper.
[110]

 

 

2. ZnO-NP Synthesis 
o The filtered plant extract is mixed with a zinc 

precursor (e.g., zinc acetate) in a reaction flask. 

o The mixture is stirred for 4 hours at 100 rpm under 

controlled heating conditions.
[111-113]

 

 

3. Purification of ZnO-NPs 
o The reaction solution is centrifuged at 10,000×g for 

20 minutes to separate the precipitate from the 

supernatant. 

o The precipitate is collected, washed with distilled 

water, and freeze-dried to obtain ZnO-NPs .
[114]

 

 

 
Figure 3: Biosynthesis of ZnO-NPs from Plant based extract. 
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5. Advantages of Advancements in ZnO 

Nanostructures 

Advancements in ZnO nanostructures have unlocked 

numerous benefits in environmental and agricultural 

remediation.
[115]

 Their remarkable photocatalytic 

properties enable efficient degradation of organic 

pollutants, dyes, and other hazardous substances, 

particularly under UV light.
[116]

 This makes them a 

powerful tool for environmental cleanup efforts. ZnO 

nanostructures also exhibit broad-spectrum antimicrobial 

properties, which are invaluable for controlling plant 

pathogens and promoting crop health. Furthermore, their 

eco-friendly synthesis methods, including plant-mediated 

techniques, align with sustainable development goals by 

minimizing environmental harm. In agriculture, ZnO 

nanoparticles enhance soil fertility and nutrient uptake, 

fostering healthier plant growth.
[117]

 Their versatility in 

form, such as nanoparticles, nanorods, and thin films, 

allows for tailored applications in diverse scenarios. 

Additionally, advancements in green synthesis have 

reduced production costs, making ZnO nanostructures 

more accessible for large-scale use.
[118-120] 

 

6. Disadvantages of Advancements in ZnO 

Nanostructures 

Despite their potential, ZnO nanostructures face notable 

limitations. Environmental and ecological risks, such as 

nanoparticle toxicity to aquatic and terrestrial organisms, 

raise concerns about their long-term sustainability.
[121]

 

Moreover, their photocatalytic efficiency is primarily 

limited to UV light, reducing their effectiveness under 

natural sunlight unless modified through doping or other 

enhancements. Scaling up the production of ZnO 

nanostructures with uniform quality remains a challenge, 

especially in green synthesis methods.
[122-123]

 Their 

tendency to agglomerate can further compromise 

efficiency, necessitating the use of stabilizers. Over-

reliance on their antimicrobial properties in agriculture 

may lead to microbial resistance, diminishing their 

efficacy over time. Additionally, the lack of standardized 

regulatory frameworks and safety protocols complicates 

their deployment, highlighting the need for 

comprehensive assessments and guidelines to mitigate 

potential risks. 

 

CONCLUSION 

Advancements in ZnO nanostructures have demonstrated 

significant potential for addressing critical challenges in 

environmental and agricultural remediation. Their 

exceptional photocatalytic properties, antimicrobial 

activity, and ability to enhance nutrient uptake highlight 

their versatility and effectiveness. The development of 

green synthesis methods further reinforces their role as 

an eco-friendly and cost-effective solution. However, the 

associated challenges, including potential environmental 

toxicity, agglomeration issues, and limitations under 

natural light, underscore the importance of addressing 

these drawbacks through continued research and 

innovation. Moreover, the establishment of standardized 

safety protocols and regulatory frameworks is essential 

to ensure their responsible use. By striking a balance 

between maximizing benefits and mitigating risks, ZnO 

nanostructures can play a transformative role in fostering 

sustainable environmental and agricultural practices.
[124]
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