
Research Artícle

World Journal of Pharmaceutical and Life Sciences WJPLS

www.wjpls.org

SJIF Impact Factor: 3.347

SYNTHESIS, CHARACTERISATION AND APPLICATION PROPERTIES OF SOME NOVEL ACID AZO DYES.

Dr. D.G.Patel and N.K.Prajapati*

Department of Chemistry, Municipal arts and Urban Bank scIence College, Mehsana-384001, Gujarat, India.

*Department of Chemistry, M.N. College, Visnagar-384315, Gujarat, India.

Article Received on 15/11/2016 Article Revised on 06/12/2016 Article Accepted on 27/12/2016

*Corresponding Author Dr. N. K. Prajapati Department of Chemistry, M.N. College, Visnagar-384315, Gujarat, India.

ABSTRACT

Novel acid azo dyes have been prepared by the coupling of diazo solution of 4 –methyl Aniline with 1-(4-N-acetyl amino) 2-methyl phenyl, 2-chloro ethanone. The resultant product were hydrolysis by refluxing with ethanol containing for 4-5 hours. The coupling

compound of various aromatic acid 1a-1g with above diazonium salt soln. The resultant 2a-2g dyes were characterized by spectral techniques, *i.e.*, elemental analysis, IR, UV—visible spectroscopy. The dyeing performance of all the dyes was evaluated on wool and nylon fabrics and studies their light and washing fastness properties.

KEYWORDS: acid azo dye, UV—visible spectroscopy, light fastness, washing fastness.

INTRODUCTION

Out of different classes of dyes, azo dyes constitute the largest group of colorants used in industry.^[1] Azo dyes do not occur in nature and are produced only through chemical synthesis.^[2] The emergence of diverse classes of synthetic dyes including azo-dye occurred due to constant effort to find specific dye or a particular class of dye for application on diverse materials of industrial importance mainly textile fibres, aluminium sheet, leather, electro optical devices, ink – jet printers etc.^[3]

While phenols are well established intermediates for the synthesis of various commercial dyes^[4-8], they are marketed in the form of azo-acid dyes *etc*. All of these dyes having

phenolic motif, containing hydroxyl group as an auxochrome group. Such auxochromic(-OH) and chromophoric (C=O) group containing compound The area in which the acid azo dyes formation based on this compound may yield the dyes with good hue properties. Hence, in continuation of our earlier work^[9-10], it was thought interesting to explore the field of acid azo dyes based on 1-(4-N-acetyl amino) 2-methyl phenyl 2-chloro ethanone. The proposed synthetic route is shown in Scheme 1.

MATERIALS AND METHODS

All the chemicals used were of analytical reagent grade and were used without further purification, All the product were synthesized and characterized by their spectral analysis, All Chemicals and s olvents like acetone, ethanol, NaNO₂, NaOH, sodium acetate were purchased from S.D.fine chemicals (india).

Melting points were taken by open capillary tube and are uncorrected. The UV-Visible spectra were recorded in DMF using Shimadzu A-200 Spectrophotometer and C,H,N of all disperse dyes were estimated by the means of a carlo Erba elemental analyzer (Italy) The characteristic data of different molecules were studied their light, wash fastness properties and further study applied on wool fibers and nylon fibers.

EXPERIMENTAL

Synthesis of acid azo dyes: First 4-methyl aniline was dissolve in a mixture of anhydrous actetone and pyridine in 250ml flask then added dropwise to a mixture of 1-(4-N-acetyl amino) 2-methyl phenyl 2-chloro ethanone and sodiumbicarbonate as an accepter. The reaction mixture is set aside over night. Then resultant product were hydrolysis by refluxing with ethanol containg HCl for 4-5 hours . The cool solution was dilute with water and was mass just alkaline with conc.NH₃ solution (d= 0.880) to give yield 1--(4-amino-2-methyl phenyl)2-(N-4-methyl phenyl) ethanone. Diazotization of various aromatic acid was performed by a reported method.^[11-13] The yield was dissolved in HCl with stirring and the solution cooled to 0-5 c in an ice-bath . A solution of sodium nitrite (0.01 mole) in 5ml water cooled to 0 c then was added .The excess nitrous acid was neutralized with sulfamic acid/urea (1.0 gm) and the mixture was filtered to get the clear diazonium salt solution. 1a-1g coupling component was dissolved in NaOH (15 ml) and then solution cooled 0-5 c. To this well stirred solution the above diazonium salt solution was added slowly so that temperature did not rise above 0-5 c while maintaining the pH 4-5 by the action of sodium acetate solution (10% w/v) the mixture was stirred for 3 hrs. at 0-5 c. After

completion of the reaction the solid material was filtered, washed and dried it. So 2a-2g acid azo dyes were prepared.

RESULTS AND DISCUSSION

The acid azo dyes obtained from this compounds are shown in Scheme-I The observed bands in the IR spectra for each dye are shown in Table-I.

IR spectra of all seven series of acid azo dyes contain aromatic nuclei, azo group and hydroxyl group. The band appeared from 1030 to 1275 cm⁻¹ due to primary –OH group, The strong band at 1575 to 1640 cm⁻¹ appeared in the spectra are considered for the presence of azo (-N=N-) group. The bands around of 660 to 1180 cm⁻¹ are attributed to the presence of –SO₃OH group. In the spectra of dyes obtained from aniline derivatives side chain attached to the tertiary nitrogen The broad band around 3430-3540 comprises to primary amine stretching. The weak bands observed 2890-and 2950 cm⁻¹ which is attributed to the -CH₂ stretching vibration.

The IR spectra of all dyes comprise the important bands due to initial diazo component. The bends due to -CH3 stretching 2905-2930 and 1320-1475 cm⁻¹ and -CO of $-COCH_2$ aniline (-CH3). The other bands due to presence of coupling component are their respective positions. The elemental of C,H,N confirmed by Table: II.

The visible absorption spectroscopic properties of the all dyes were recorded in DMF. Absorption maximum (λ max), Intensities' (log ε), dyeing assessment of acid azo dyes on Wool and Nylon fabrics are shown in Table-III, The absorption maximum (λ max) of all the dyes falls in the range 407-487 nm in DMF. The values of the logarithm of molar extinction coefficient (log ε) of all the dyes were in the range of 3.645-4.783, consistent with their medium absorption intensity The disperse azo dyes were applied at a 2% dye bath on nylon and wool fabrics and gave various shade implied in Table-III.

World Journal of Pharmaceutical and Life Sciences

Dye No	Coulping component	Acid azo Dyes
2a	NH ₂ SO ₃ H	CH_3 $HNCH_2CO$ $N=N$ NH_2 SO_3H
2b	H ₂ N SO ₃ H	CH_3 $HNCH_2CO$ H_2N H_2
2c	H ₂ N SO ₃ H	CH_3 $HNCH_2CO$ $N=N$ H_2N SO_3H
2d	HO ₃ S SO ₃ H	CH_3 $HNCH_2CO$ $N=N$ HO_3S SO_3H
2e	HO ₃ S	CH_3 $HNCH_2CO$ NH_2 OH HO_3S
2f	HO ₃ S NH ₂	CH_3 $HNCH_2CO$ $N=N$ HO_3S NH_2
2g	OH NH ₂ SO ₃ H	$CH_{3} \longrightarrow HNCH_{2}CO \longrightarrow N=N \longrightarrow SO_{3}H$

Table: I. Structure of the Coulping component and corresponding of novel azo dyes.

Dye No	Primary amine cm ⁻¹	C-H Stretching aromatic cm ⁻¹	N=N Stretching aromatic cm ⁻¹	Napthelene Substituted cm ⁻¹	1,4-di Substituted cm ⁻¹	Primary Alcohol cm ⁻¹	SO ₂ Stretching cm ⁻¹	Tertiary Amine cm ⁻¹	S=O Stretching vibration of Sulfonic acid cm ⁻¹
R-1	3440	2920,	1590	1560	1570,1155,	1030,	1150;1160	1140	1150;1040
K-1	3440	1615;1650	1640	1500	1040.	1100;1250	1300	1350	660
R-2	2450	2940,2975,	1630	1575	1560,	1030,	1180;1100	1150	1150;1040
K- 2	3450	1620,1425	1050		1160.	1100; 1260.	1340	1375	675
R-3	3430	2625,1620,	1640	1540	1570,	1030,	1175;1350	1160	1150
к-э		1475,1475			1165;1030	1240;1100	650	1360;1350	675
R-4	3450	2900,2950,	1575	1550	1530,	1030,	1350;1180	1140	1150;1060
К-4		1510,1615	1630		1130;1040	1100;1230	1150;650	1345;1370	660
R-5	3450	2950,	1610	1550	1570,	1030,	1180	1150	1190;1040
к-3		1620; 1610	1010		1155;1040	1050;1100	1375	1360	670
R-6	3440	2915,	1620	1540	1510,3010,	1050	1175	1140	1180;1030
K-0		1570;1530	1630	1340	1175,1040.	1100	1350	1375	660
R-7	3430	2925,	1575,1630	1575	1610,1205,	1050,	1330;1120	1180	1150;1030
		1570;1515	1373,1030		1050.	1100;1275	650	1350	675

 Table: I Position selected Bands in IR Spectra of Aid azo dyes

All the spectra comparised the bands around 2890 and 2950 cm⁻¹ presented of -CH₂ of -COCH₂ group

Table: II. Characterization of novel Acid azo dyes.

Dye No	Molecular	Mol.Wt	Melting Point [•] C	% C		% H		% N	
	Formula	(gm/mole)		Found	Cal	Found	Cal	Found	Cal
2a	$C_{26}H_{24}N_4O_4S$	488	230	63.90	63.93	4.90	4.91	11.40	11.47
2b	$C_{26}H_{24}N_4O_4S$	488	337	63.90	63.93	4.90	4.91	11.40	11.47
2c	$C_{26}H_{24}N_4O_4S$	488	214	63.90	63.93	4.90	4.91	11.40	11.47
2d	$C_{26}H_{24}N_4O_8S_2\\$	584	233	53.40	53.42	4.00	4.10	9.50	9.58
2e	$C_{26}H_{24}N_4O_5S$	504	242	61.80	61.90	4.70	4.76	11.10	11.11
2f	$C_{26}H_{24}N_4O_5S$	504	223	61.80	61.90	4.70	4.76	11.10	11.11
2g	$C_{26}H_{24}N_4O_8S_2$	584	242	53.40	53.42	4.00	4.10	9.50	9.58

www.wjpls.org

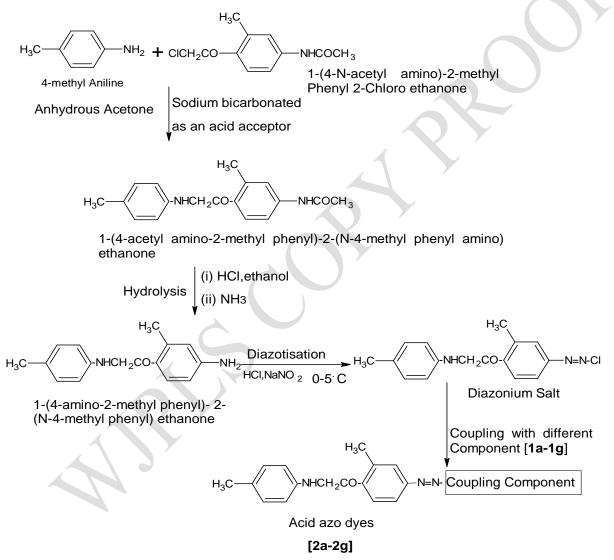

	Dyeir					eing properties		
Dye	λmax (nm)	Log e	Shade	Dyeing on wool Dye		Dyeing	ng on nylon	
				L	\mathbf{W}	L	W	
2a	471	3.895	Light red	5	4	5	4	
2b	479	4.097	Light red	5	3	5	3	
2c	487	4.023	Rose like	4 to 5	4	4 to 5	4	
2d	407	4.450	Brown	4 to 5	4	4 to 5	4	
2e	458	3.645	Dark Brown	4	3	4	3	
2f	407	3.700	Brown	5	5	5	5	
2g	480	4.783	Rose like	5	4	5	4	

Table: III. Absorption maximum (λ max), Intensites (log ϵ), Acid azo dyes on Wool and Nylon fabrics.

Light fastness: 1-poor, 2-slight, 3-moderate, 4-fair, 5-good, 6-very good.

Wash fastness: 1-poor, 2-fair, 3-good, 4-very good, 5-excellent.

Reaction scheme-I

1a	Laurent's acid	NH ₂ SO ₃ H	1e	Gamma acid	HO ₃ S
1b	Bronner's acid	H ₂ N SO ₃ H	1f	J-acid	HO ₃ S NH ₂
1c	Tobias acid	H ₂ N SO ₃ H	1g	Chicago acid	OH NH ₂ SO ₃ H SO ₃ H
1d	H-acid	HO ₃ S SO ₃ H			

CONCLUSION

The azo disperse dyes have been prepared using based on 1-(4-N-acetyl amino) 2-methyl phenyl, 2-chloro ethanone The present study prepared acid azo dyes showed wide range of shades Light red, Light red, Rose like, Brown, Dark brown, Brown, Rose like. They showed good dyeing performance on wool and nylon fiber and The light fastness values of the acid azo dyes are more consistent. The dyeing showed an fair and good fastness to light, 2f acid azo dyes was excellent fastness to washing and other dyes were with good to very good fastness to washing.

REFERENCES

- 1. Zollinger, H. Color Chemistry-Synthesis, Properties and Application of Organic Dyes and Pigments, VCH publishers, New York, 1987; 92-102.
- 2. Maynard, C. W., Riegel's Handbook of Industrial Chemistry, 3rd ed. Van Nostard Reinhold, New York, 1983; 809-861.
- catino S. C and Farris, R. E., Concise Encyclopedia of Chemical Technology, M. Grayson Ed., John Wiley & sons, New York, 1985; 142.
- 4. Cumming W M and Howie G, J Chem Soc., 1933; 133.
- 5. Peters A T and Walker D, J Chem Soc., 1956; 429.
- 6. Gordon P F and Gregory P, Organic Chemistry in Colour, 1st Ed., Springer-Verlag
- 7. Berlin Heidelberg: New York, 1983; 60.

- 8. Mohamed S K, Nour A M and El-Din, J Chem Res., (s) 1999; 8: 508.
- 9. Naik R D, Desai C K and Desai K R, Oriental J Chem., 2000; 16: 159.
- 10. B.C.Dixit, H.M.Patel, D.J.Desai, R.B.Dixit, E-J. chem. 2009; 6(2): 315.
- 11. Vogel A I, A Textbook of Practical Organic Chemistry, 3rd Ed., Longman: London, 1961; 620.
- 12. M. szymczyk, A.E.shafei, H.S.Freeman, Dye pign. 2007; 8: 72.
- H.E.Frirz-David, L.Blengy, Fundamental process of dye chemistry, 3rd edition, wiley, Newyork, 1949; 241.